Advertisement

Brain Structure and Function

, Volume 224, Issue 4, pp 1489–1503 | Cite as

Phase fMRI informs whole-brain function connectivity balance across lifespan with connection-specific aging effects during the resting state

  • Zikuan ChenEmail author
  • Qing Zhou
  • Vince Calhoun
Original Article
  • 292 Downloads

Abstract

A functional magnetic resonance imaging (fMRI) experiment produces complex-valued images consisting of pairwise magnitude and phase images. As different perspective on the same magnetic source, fMRI magnitude and phase data are complementary for brain function analysis. We collected 600-subject fMRI data during rest, decomposed via group-level independent component analysis (ICA) (mICA and pICA for magnitude and phase respectively), and calculated brain functional network connectivity matrices (mFC and pFC). The pFC matrix shows a fewer of significant connections balanced across positive and negative relationships. In comparison, the mFC matrix contains a positively-biased pattern with more significant connections. Our experiment data analyses also show that human brain maintains a whole-brain connection balance in resting state across an age span from 10 to 76 years, however, phase and magnitude data analyses reveal different connection-specific age effects on significant positive and negative subnetwork couplings.

Keywords

BOLD fMRI Independent component analysis (ICA) Functional network connectivity (FC) Resting state Functional connectivity balance Age effect 

Abbreviations

BOLD

Blood oxygenation level dependent

fMRI

Functional magnetic resonance imaging

FDR

False discovery rate

mICA

Magnitude-data independent component analysis (ICA)

pICA

Phase-data ICA

mFC

Magnitude-depicted function network connectivity (FC)

pFC

Phase-depicted FC

Notes

Acknowledgements

The authors would like to acknowledge the funding support of NIH Grant P20GM103472. The authors declare no competing financial interest.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Informed consent

All the human subjects provided written consent for MRI scanning under the approval of IRB at the University of New Mexico.

References

  1. Abou Elseoud A, Littow H, Remes J, Starck T, Nikkinen J, Nissila J, Timonen M, Tervonen O, Kiviniemi V (2011) Group-ICA model order highlights patterns of functional brain connectivity. Front Syst Neurosci 5:37CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adhikari MH, Hacker CD, Siegel JS, Griffa A, Hagmann P, Deco G, Corbetta M (2017) Decreased integration and information capacity in stroke measured by whole brain models of resting state activity. Brain 140(4):1068–1085CrossRefPubMedPubMedCentralGoogle Scholar
  3. Allen EA, Erhardt EB, Damaraju E, Gruner W, Segall JM, Silva RF, Havlicek M, Rachakonda S, Fries J, Kalyanam R, Michael AM, Caprihan A, Turner JA, Eichele T, Adelsheim S, Bryan AD, Bustillo J, Clark VP, Feldstein Ewing SW, Filbey F, Ford CC, Hutchison K, Jung RE, Kiehl KA, Kodituwakku P, Komesu YM, Mayer AR, Pearlson GD, Phillips JP, Sadek JR, Stevens M, Teuscher U, Thoma RJ, Calhoun VD (2011) A baseline for the multivariate comparison of resting-state networks. Front Syst Neurosci 5:2PubMedPubMedCentralGoogle Scholar
  4. Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24(3):663–676CrossRefPubMedGoogle Scholar
  5. Aragri A, Scarabino T, Seifritz E, Comani S, Cirillo S, Tedeschi G, Esposito F, Di Salle F (2006) How does spatial extent of fMRI datasets affect independent component analysis decomposition? Hum Brain Mapp 27(9):736–746CrossRefPubMedGoogle Scholar
  6. Arbabshirani MR, Calhoun VD (2011) Functional network connectivity during rest and task: comparison of healthy controls and schizophrenic patients. Conf Proc IEEE Eng Med Biol Soc 2011:4418–4421PubMedGoogle Scholar
  7. Arja SK, Feng Z, Chen Z, Caprihan A, Kiehl KA, Adali T, Calhoun VD (2009) Changes in fMRI magnitude data and phase data observed in block-design and event-related tasks. Neuroimage 59(4):3748–3761Google Scholar
  8. Balla DZ, Sanchez-Panchuelo RM, Wharton SJ, Hagberg GE, Scheffler K, Francis ST, Bowtell R (2014) Functional quantitative susceptibility mapping (fQSM). Neuroimage 100:112–124CrossRefPubMedGoogle Scholar
  9. Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360(1457):1001–1013CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bianciardi M, van Gelderen P, Duyn JH (2014) Investigation of BOLD fMRI resonance frequency shifts and quantitative susceptibility changes at 7 T. Hum Brain Mapp 35(5):2191–2205CrossRefPubMedGoogle Scholar
  11. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198CrossRefPubMedGoogle Scholar
  12. Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14(3):140–151CrossRefGoogle Scholar
  13. Calhoun VD, Liu J, Adali T (2009) A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage 45(1 Suppl):S163–S172CrossRefPubMedGoogle Scholar
  14. Caliandro P, Reale G, Vecchio F, Iacovelli C, Miraglia F, Masi G, Rossini PM (2017) Defining a functional network homeostasis after stroke: EEG-based approach is complementary to functional MRI. Brain 140(12):e71CrossRefPubMedGoogle Scholar
  15. Chen Z, Calhoun VD (2011) Two pitfalls of BOLD fMRI magnitude-based neuroimage analysis: non-negativity and edge effect. J Neurosci Methods 199(2):363–369CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chen Z, Calhoun V (2013) Understanding the morphological mismatch between magnetic susceptibility source and T2* image. Magn Reson Insights 6:65–81PubMedPubMedCentralGoogle Scholar
  17. Chen Z, Calhoun V (2015) Nonlinear magnitude and linear phase behaviors of T2* imaging: theoretical approximation and Monte Carlo simulation. Magn Reson Imaging 33(4):390–400CrossRefPubMedGoogle Scholar
  18. Chen Z, Calhoun V (2016) T2* phase imaging and processing for magnetic susceptibility mapping. Biomed Phys Eng Express 2:025015CrossRefGoogle Scholar
  19. Chen Z, Caprihan A, Damaraju E, Rachakonda S, Calhoun V (2018a) Functional brain connectivity in resting-state fMRI using phase and magnitude data. J Neurosci Methods 293:299–309CrossRefPubMedGoogle Scholar
  20. Chen Z, Robinson J, Calhoun V (2018b) Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping. PLoS One 13(1):e0191266CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dagher J, Nael K (2017) MR phase imaging with bipolar acquisition. NMR Biomed 34(4):e3523CrossRefGoogle Scholar
  22. Damoiseaux JS (2017) Effects of aging on functional and structural brain connectivity. Neuroimage 160:32–40CrossRefPubMedGoogle Scholar
  23. Dodel S, Herrmann JM, Geisel T (2002) Functional connectivity by cross-correlation clustering. Neurocomputing 44–46:1065–1070CrossRefGoogle Scholar
  24. Du Y, Fan Y (2013) Group information guided ICA for fMRI data analysis. Neuroimage 69:157–197CrossRefPubMedGoogle Scholar
  25. Du Y, Pearlson GD, Liu J, Sui J, Yu Q, He H, Castro E, Calhoun VD (2015) A group ICA based framework for evaluating resting fMRI markers when disease categories are unclear: application to schizophrenia, bipolar, and schizoaffective disorders. Neuroimage 122:272–280CrossRefPubMedPubMedCentralGoogle Scholar
  26. Erhardt EB, Rachakonda S, Bedrick EJ, Allen EA, Adali T, Calhoun VD (2011) Comparison of multi-subject ICA methods for analysis of fMRI data. Hum Brain Mapp 32(12):2075–2095CrossRefPubMedGoogle Scholar
  27. Feng Z, Caprihan A, Blagoev KB, Calhoun VD (2009) Biophysical modeling of phase changes in BOLD fMRI. Neuroimage 47(2):540–548CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ferreira LK, Regina AC, Kovacevic N, Martin Mda G, Santos PP, Carneiro Cde G, Kerr DS, Amaro E Jr, McIntosh AR, Busatto GF (2016) Aging effects on whole-brain functional connectivity in adults free of cognitive and psychiatric disorders. Cereb Cortex 26(9):3851–3865CrossRefGoogle Scholar
  29. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678CrossRefGoogle Scholar
  30. Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101(6):3270–3283CrossRefPubMedPubMedCentralGoogle Scholar
  31. Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15(4):870–878CrossRefGoogle Scholar
  32. Guo Y, Pagnoni G (2008) A unified framework for group independent component analysis for multi-subject fMRI data. Neuroimage 42(3):1078–1093CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jafri MJ, Pearlson GD, Stevens M, Calhoun VD (2008) A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage 39(4):1666–1681CrossRefPubMedGoogle Scholar
  34. Kee Y, Liu Z, Zhou L, Dimov A, Cho J, de Rochefort L, Seo JK, Wang Y (2017) Quantitative susceptibility mapping (QSM) algorithms: mathematical rationale and computational implementations. IEEE Trans Biomed Eng 64(11):2531–2545CrossRefPubMedGoogle Scholar
  35. Kringelbach ML, Green AL, Aziz TZ (2011) Balancing the brain: resting state networks and deep brain stimulation. Front Integr Neurosci 5:8CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lewis LD, Setsompop K, Rosen BR, Polimeni JR (2016) Fast fMRI can detect oscillatory neural activity in humans. Proc Natl Acad Sci USA 113(43):E6679–E6685CrossRefPubMedGoogle Scholar
  37. Li YO, Adali T, Calhoun VD (2007) A feature-selective independent component analysis method for functional MRI. Int J Biomed Imaging 2007:15635PubMedPubMedCentralGoogle Scholar
  38. Litwin-Kumar A, Doiron B (2012) Slow dynamics and high variability in balanced cortical networks with clustered connections. Nat Neurosci 15(11):1498–1505CrossRefPubMedPubMedCentralGoogle Scholar
  39. Liu Y, Huang L, Li M, Zhou Z, Hu D (2015) Anticorrelated networks in resting-state fMRI-BOLD data. Bio Med Mater Eng 26(Suppl 1):S1201–S1211CrossRefGoogle Scholar
  40. Marino J, Schummers J, Lyon DC, Schwabe L, Beck O, Wiesing P, Obermayer K, Sur M (2005) Invariant computations in local cortical networks with balanced excitation and inhibition. Nat Neurosci 8(2):194–201CrossRefPubMedGoogle Scholar
  41. McKeown MJ, Sejnowski TJ (1998) Independent component analysis of fMRI data: examining the assumptions. Hum Brain Mapp 6(5–6):368–372CrossRefPubMedGoogle Scholar
  42. McKeown MJ, Hansen LK, Sejnowsk TJ (2003) Independent component analysis of functional MRI: what is signal and what is noise? Curr Opin Neurobiol 13(5):620–629CrossRefPubMedPubMedCentralGoogle Scholar
  43. Meadows R (2011) Finding balance in cortical networks. PLoS Biol 9(3):e1001035CrossRefPubMedPubMedCentralGoogle Scholar
  44. Menon RS (2002) Postacquisition suppression of large-vessel BOLD signals in high-resolution fMRI. Magn Reson Med 47(1):1–9CrossRefPubMedGoogle Scholar
  45. Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44(3):893–905CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ozbay PS, Warnock G, Rossi C, Kuhn F, Akin B, Pruessmann KP, Nanz D (2016) Probing neuronal activation by functional quantitative susceptibility mapping under a visual paradigm: a group level comparison with BOLD fMRI and PET. Neuroimage 137:52–60CrossRefPubMedGoogle Scholar
  47. Robinson SD, Dymerska B, Bogner W, Barth M, Zaric O, Goluch S, Grabner G, Deligianni X, Bieri O, Trattnig S (2015) Combining phase images from array coils using a short echo time reference scan (COMPOSER). Magn Reson Med 77:318–327CrossRefPubMedPubMedCentralGoogle Scholar
  48. Robinson SD, Bredies K, Khabipova D, Dymerska B, Marques JP, Schweser F (2017a) An illustrated comparison of processing methods for MR phase imaging and QSM: combining array coil signals and phase unwrapping. NMR Biomed 30(4):e3601CrossRefGoogle Scholar
  49. Robinson SD, Dymerska B, Bogner W, Barth M, Zaric O, Goluch S, Grabner G, Deligianni X, Bieri O, Trattnig S (2017b) Combining phase images from array coils using a short echo time reference scan (COMPOSER). Magn Reson Med 77(1):318–327CrossRefPubMedGoogle Scholar
  50. Rowe DB (2005) Modeling both the magnitude and phase of complex-valued fMRI data. Neuroimage 25(4):1310–1324CrossRefPubMedGoogle Scholar
  51. Rowe DB (2009) Magnitude and phase signal detection in complex-valued fMRI data. Magn Reson Med 62(5):1356–1357 (author reply 1358-60) CrossRefPubMedPubMedCentralGoogle Scholar
  52. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069CrossRefPubMedGoogle Scholar
  53. Schweser F, Deistung A, Reichenbach J (2016) Foundations of MRI phase imaging and processing for quantitative susceptibility mapping (QSM). Z Med Phys 26(1):6–34CrossRefPubMedGoogle Scholar
  54. Wu JT, Wu HZ, Yan CG, Chen WX, Zhang HY, He Y, Yang HS (2011) Aging-related changes in the default mode network and its anti-correlated networks: a resting-state fMRI study. Neurosci Lett 504(1):62–67CrossRefPubMedGoogle Scholar
  55. Xu J, Potenza MN, Calhoun VD (2013) Spatial ICA reveals functional activity hidden from traditional fMRI GLM-based analyses. Front Neurosci 7:154CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Mind Research Network and LBERIAlbuquerqueUSA
  2. 2.School of Physics and AstronomyYunnan UniversityKunmingChina
  3. 3.Department of Electrical and Computer EngineeringUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations