Advertisement

Adult vitamin D deficiency disrupts hippocampal-dependent learning and structural brain connectivity in BALB/c mice

  • Md. Mamun Al-Amin
  • Robert K. P. Sullivan
  • Nyoman D. Kurniawan
  • Thomas H. J. BurneEmail author
Original Article

Abstract

Converging evidence from human and animal studies support an association between vitamin D deficiency and cognitive impairment. Previous studies have shown that hippocampal volume is reduced in adults with vitamin D deficiency as well as in a range of disorders, such as schizophrenia. The aim of the current study was to examine the effect of adult vitamin D (AVD) deficiency on hippocampal-dependent spatial learning, and hippocampal volume and connectivity in healthy adult mice. Ten-week-old male BALB/c mice were fed a control (vitamin D 1500 IU/kg) or vitamin D-depleted (vitamin D 0 IU/kg) diet for a minimum of 10 weeks. The mice were then tested for hippocampal-dependent spatial learning using active place avoidance (APA) and on tests of muscle and motor coordination (rotarod and grip strength). The mice were perfused and brains collected to acquire ex vivo structural and diffusion-weighted images using a 16.4 T MRI scanner. We also performed immunohistochemistry to quantify perineuronal nets (PNNs) and parvalbumin (PV) interneurons in various brain regions. AVD-deficient mice had a lower latency to enter the shock zone on APA, compared to control mice, suggesting impaired hippocampal-dependent spatial learning. There were no differences in rotarod or grip strength, indicating that AVD deficiency did not have an impact on muscle or motor coordination. AVD deficiency did not have an impact on hippocampal volume. However, AVD-deficient mice displayed a disrupted network centred on the right hippocampus with abnormal connectomes among 29 nodes. We found a reduction in PNN positive cells, but no change in PV, centred on the hippocampus. Our results provide compelling evidence to show that AVD deficiency in otherwise healthy adult mice may play a key role in hippocampal-dependent learning and memory formation. We suggest that the spatial learning deficits could be due to the disruption of right hippocampal structural connectivity.

Keywords

Vitamin D Hippocampus Memory Connectome Perineuronal nets (PNNs) 

Notes

Funding

This research was supported by the National Health and Medical Research Council grant APP1070081 to TB and a University of Queensland International PhD Scholarship to MA. We thank the Queensland Government and Australian Federal Government for funding and operational support of the 16.4T NMR spectrometer through the QLD NMR Network (QNN) and the National Imaging Facility (NIF).

Compliance with ethical standards

Informed consent

Not applicable.

Ethical approval

All experiments conformed to The University of Queensland’s Animal Welfare Unit guidelines for animal use in research and was approved by the University of Queensland Animal Ethics Committee (QBI/376/15).

Conflict of interest

The authors have no conflict of interests to declare.

Ethical statement

All work was carried out in accordance with the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes under the guidelines of the National Health and Medical Research Council of Australia.

Supplementary material

429_2019_1840_MOESM1_ESM.tif (1 mb)
Supplementary material 1 (TIF 1071 KB)
429_2019_1840_MOESM2_ESM.tif (580 kb)
Supplementary material 2 (TIF 579 KB)
429_2019_1840_MOESM3_ESM.tif (223 kb)
Supplementary material 3 (TIF 223 KB)
429_2019_1840_MOESM4_ESM.tif (324 kb)
Supplementary material 4 (TIF 323 KB)
429_2019_1840_MOESM5_ESM.tif (610 kb)
Supplementary material 5 (TIF 610 KB)
429_2019_1840_MOESM6_ESM.tif (918 kb)
Supplementary material 6 (TIF 917 KB)
429_2019_1840_MOESM7_ESM.docx (19 kb)
Supplementary material 7 (DOCX 18 KB)
429_2019_1840_MOESM8_ESM.docx (1.3 mb)
Supplementary material 8 (DOCX 1284 KB)

References

  1. Afzal S, Bojesen SE, Nordestgaard BG (2014) Reduced 25-hydroxyvitamin D and risk of Alzheimer’s disease and vascular dementia. Alzheimers Dement 10(3):296–302.  https://doi.org/10.1016/j.jalz.2013.05.1765 Google Scholar
  2. Aggleton JP, Nelson AJ (2015) Why do lesions in the rodent anterior thalamic nuclei cause such severe spatial deficits? Neurosci Biobehav Rev 54:131–144.  https://doi.org/10.1016/j.neubiorev.2014.08.013 Google Scholar
  3. Al-Amin M, Bradford D, Sullivan RKP, Kurniawan ND, Moon Y, Han SH, Zalesky A, Burne THJ (2018) Vitamin D deficiency is associated with reduced hippocampal volume and disrupted structural connectivity in patients with mild cognitive impairment. Hum Brain Map 40(2):394–406.  https://doi.org/10.1002/hbm.24380 Google Scholar
  4. Altemus KL, Finger S, Wolf C, Birge SJ (1987) Behavioral correlates of vitamin D deficiency. Physiol Behav 39(4):435–440Google Scholar
  5. Annweiler C, Montero-Odasso M, Hachinski V, Seshadri S, Bartha R, Beauchet O (2013) Vitamin D concentration and lateral cerebral ventricle volume in older adults. Mol Nutr food Res 57(2):267–276.  https://doi.org/10.1002/mnfr.201200418 Google Scholar
  6. Annweiler C, Annweiler T, Bartha R, Herrmann FR, Camicioli R, Beauchet O (2014) Vitamin D and white matter abnormalities in older adults: a cross-sectional neuroimaging study. Eur J Neurol 21(12):1436–1495.  https://doi.org/10.1111/ene.12511 Google Scholar
  7. Annweiler C, Bartha R, Goncalves S, Karras SN, Millet P, Feron F, Beauchet O (2015) Vitamin D-related changes in intracranial volume in older adults: a quantitative neuroimaging study. Maturitas 80(3):312–317.  https://doi.org/10.1016/j.maturitas.2014.12.011 Google Scholar
  8. Arora K, Sequeira JM, Hernandez AI, Alarcon JM, Quadros EV (2017) Behavioral alterations are associated with vitamin B12 deficiency in the transcobalamin receptor/CD320 KO mouse. PloS One 12(5):e0177156.  https://doi.org/10.1371/journal.pone.0177156 Google Scholar
  9. Balion C, Griffith LE, Strifler L, Henderson M, Patterson C, Heckman G, Llewellyn DJ, Raina P (2012) Vitamin D, cognition, and dementia: a systematic review and meta-analysis. Neurology 79(13):1397–1405.  https://doi.org/10.1212/WNL.0b013e31826c197f Google Scholar
  10. Bennett CM, Wolford GL, Miller MB (2009) The principled control of false positives in neuroimaging. Soc Cognit Affect Neurosci 4(4):417–422Google Scholar
  11. Bikbaev A, Frischknecht R, Heine M (2015) Brain extracellular matrix retains connectivity in neuronal networks. Sci Rep 5:14527.  https://doi.org/10.1038/srep14527 Google Scholar
  12. Black AH, Nadel L, O’Keefe J (1977) Hippocampal function in avoidance learning and punishment. Psychol Bull 84(6):1107–1129Google Scholar
  13. Bokor H, Csaki A, Kocsis K, Kiss J (2002) Cellular architecture of the nucleus reuniens thalami and its putative aspartatergic/glutamatergic projection to the hippocampus and medial septum in the rat. Eur J Neurosci 16(7):1227–1239Google Scholar
  14. Botcher NA, Falck JE, Thomson AM, Mercer A (2014) Distribution of interneurons in the CA2 region of the rat hippocampus. Frontiers in neuroanatomy 8:104.  https://doi.org/10.3389/fnana.2014.00104 Google Scholar
  15. Brouwer-Brolsma EM, Dhonukshe-Rutten RA, van Wijngaarden JP, van der Zwaluw NL, Sohl E, In’t Veld PH, van Dijk SC, Swart KM, Enneman AW, Ham AC, van Schoor NM, van der Velde N, Uitterlinden AG, Lips P, Feskens EJ, de Groot LC (2016) Low vitamin D status is associated with more depressive symptoms in Dutch older adults. Eur J Nutr 55(4):1525–1534.  https://doi.org/10.1007/s00394-015-0970-6 Google Scholar
  16. Brown J, Bianco JI, McGrath JJ, Eyles DW (2003) 1,25-dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neuroscience letters 343(2):139–143Google Scholar
  17. Burgess N, Maguire EA, O’Keefe J (2002) The human hippocampus and spatial and episodic memory. Neuron 35(4):625–641Google Scholar
  18. Byrne JH, Voogt M, Turner KM, Eyles DW, McGrath JJ, Burne TH (2013) The impact of adult vitamin D deficiency on behaviour and brain function in male Sprague-Dawley rats. PloS one 8(8):e71593.  https://doi.org/10.1371/journal.pone.0071593 Google Scholar
  19. Cabungcal JH, Steullet P, Morishita H, Kraftsik R, Cuenod M, Hensch TK, Do KQ (2013) Perineuronal nets protect fast-spiking interneurons against oxidative stress. Proc Natl Acad Sci USA 110(22):9130–9135.  https://doi.org/10.1073/pnas.1300454110 Google Scholar
  20. Catani M, Dell’acqua F, Thiebaut de Schotten M (2013) A revised limbic system model for memory, emotion and behaviour. Neurosci Biobehav Rev 37(8):1724–1737.  https://doi.org/10.1016/j.neubiorev.2013.07.001 Google Scholar
  21. Chang EH, Argyelan M, Aggarwal M, Chandon TS, Karlsgodt KH, Mori S, Malhotra AK (2017) The role of myelination in measures of white matter integrity: combination of diffusion tensor imaging and two-photon microscopy of CLARITY intact brains. NeuroImage 147:253–261.  https://doi.org/10.1016/j.neuroimage.2016.11.068 Google Scholar
  22. Chiang M, Natarajan R, Fan X (2016) Vitamin D in schizophrenia: a clinical review. Evidence-Based Mental Health 19(1):6–9.  https://doi.org/10.1136/eb-2015-102117 Google Scholar
  23. Cho J, Yu NK, Choi JH, Sim SE, Kang SJ, Kwak C, Lee SW, Kim JI, Choi DI, Kim VN, Kaang BK (2015) Multiple repressive mechanisms in the hippocampus during memory formation. Science 350(6256):82–87.  https://doi.org/10.1126/science.aac7368 Google Scholar
  24. Cieslak K, Feingold J, Antonius D, Walsh-Messinger J, Dracxler R, Rosedale M, Aujero N, Keefe D, Goetz D, Goetz R, Malaspina D (2014) Low vitamin D levels predict clinical features of schizophrenia. Schizophr Res 159(2–3):543–545.  https://doi.org/10.1016/j.schres.2014.08.031 Google Scholar
  25. Cimadevilla JM, Kaminsky Y, Fenton A, Bures J (2000) Passive and active place avoidance as a tool of spatial memory research in rats. J Neurosci Methods 102(2):155–164Google Scholar
  26. Dityatev A, Schachner M, Sonderegger P (2010) The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nat Rev Neurosci 11(11):735–746.  https://doi.org/10.1038/nrn2898 Google Scholar
  27. Dolleman-Van der Weel MJ, Lopes da Silva FH, Witter MP (1997) Nucleus reuniens thalami modulates activity in hippocampal field CA1 through excitatory and inhibitory mechanisms. J Neurosci 17(14):5640–5650Google Scholar
  28. Dolleman-Van der Weel MJ, Witter MP (2000) Nucleus reuniens thalami innervates gamma aminobutyric acid positive cells in hippocampal field CA1 of the rat. Neurosci Lett 278(3):145–148Google Scholar
  29. Dumont JR, Amin E, Wright NF, Dillingham CM, Aggleton JP (2015) The impact of fornix lesions in rats on spatial learning tasks sensitive to anterior thalamic and hippocampal damage. Behav Brain Res 278:360–374.  https://doi.org/10.1016/j.bbr.2014.10.016 Google Scholar
  30. Eichenbaum H (2017) The role of the hippocampus in navigation is memory. J Neurophysiol 117(4):1785–1796.  https://doi.org/10.1152/jn.00005.2017 Google Scholar
  31. Eser B, Cora T, Eser O, Kalkan E, Haktanir A, Erdogan MO, Solak M (2010) Association of the polymorphisms of vitamin D receptor and aggrecan genes with degenerative disc disease. Genetic Test Mol Biomark 14(3):313–317.  https://doi.org/10.1089/gtmb.2009.0202 Google Scholar
  32. Eskandari G, Ghajarzadeh M, Yekaninejad MS, Sahraian MA, Gorji R, Rajaei F, Norouzi-Javidan A, Faridar A, Azimi A (2015) Comparison of serum vitamin D level in multiple sclerosis patients, their siblings, and healthy controls. Iran J Neurol 14(2):81–85Google Scholar
  33. Etgen T, Sander D, Bickel H, Sander K, Forstl H (2012) Vitamin D deficiency, cognitive impairment and dementia: a systematic review and meta-analysis. Dementia Geriatr Cognit Disorders 33(5):297–305.  https://doi.org/10.1159/000339702 Google Scholar
  34. Fernell E, Bejerot S, Westerlund J, Miniscalco C, Simila H, Eyles D, Gillberg C, Humble MB (2015) Autism spectrum disorder and low vitamin D at birth: a sibling control study. Mol Autism 6:3.  https://doi.org/10.1186/2040-2392-6-3 Google Scholar
  35. Feron F, Burne TH, Brown J, Smith E, McGrath JJ, Mackay-Sim A, Eyles DW (2005) Developmental Vitamin D3 deficiency alters the adult rat brain. Brain Res Bull 65(2):141–148.  https://doi.org/10.1016/j.brainresbull.2004.12.007 Google Scholar
  36. Garcion E, Sindji L, Leblondel G, Brachet P, Darcy F (1999) 1,25-dihydroxyvitamin D3 regulates the synthesis of gamma-glutamyl transpeptidase and glutathione levels in rat primary astrocytes. J Neurochem 73(2):859–866Google Scholar
  37. Genever PG, Dickson IR (1996) Influence of vitamin D status on hyaluronan localization in bone. Bone 18(5):429–435Google Scholar
  38. Gezen-Ak D, Dursun E, Yilmazer S (2011) The effects of vitamin D receptor silencing on the expression of LVSCC-A1C and LVSCC-A1D and the release of NGF in cortical neurons. PloS One 6(3):e17553.  https://doi.org/10.1371/journal.pone.0017553 Google Scholar
  39. Goral A, Brola W, Kasprzyk M, Przybylski W (2015) The role of vitamin D in the pathogenesis and course of multiple sclerosis. Wiad Lek 68(1):60–66Google Scholar
  40. Greicius MD, Krasnow B, Boyett-Anderson JM, Eliez S, Schatzberg AF, Reiss AL, Menon V (2003) Regional analysis of hippocampal activation during memory encoding and retrieval: fMRI study. Hippocampus 13(1):164–174.  https://doi.org/10.1002/hipo.10064 Google Scholar
  41. Griffin AL (2015) Role of the thalamic nucleus reuniens in mediating interactions between the hippocampus and medial prefrontal cortex during spatial working memory. Front Syst Neurosci 9:29.  https://doi.org/10.3389/fnsys.2015.00029 Google Scholar
  42. Groves NJ, Kesby JP, Eyles DW, McGrath JJ, Mackay-Sim A, Burne TH (2013) Adult vitamin D deficiency leads to behavioural and brain neurochemical alterations in C57BL/6J and BALB/c mice. Behav Brain Res 241:120–131.  https://doi.org/10.1016/j.bbr.2012.12.001 Google Scholar
  43. Groves NJ, Bradford D, Sullivan RK, Conn KA, Aljelaify RF, McGrath JJ, Burne TH (2016) Behavioural effects of adult vitamin D deficiency in BALB/c mice are not associated with proliferation or survival of neurons in the adult hippocampus. PLoS One 11(4):e0152328.  https://doi.org/10.1371/journal.pone.0152328 Google Scholar
  44. Hooshmand B, Lokk J, Solomon A, Mangialasche F, Miralbell J, Spulber G, Annerbo S, Andreasen N, Winblad B, Cedazo-Minguez A, Wahlund LO, Kivipelto M (2014) Vitamin D in relation to cognitive impairment, cerebrospinal fluid biomarkers, and brain volumes. J Gerontol Ser A, Biol Sci Med Sci 69 (9):1132–1138.  https://doi.org/10.1093/gerona/glu022 Google Scholar
  45. Horton WE Jr, Balakir R, Precht P, Liang CT (1991) 1,25-Dihydroxyvitamin D3 down-regulates aggrecan proteoglycan expression in immortalized rat chondrocytes through a post-transcriptional mechanism. J Biol Chem 266(36):24804–24808Google Scholar
  46. Jansen S, Gottschling C, Faissner A, Manahan-Vaughan D (2017) Intrinsic cellular and molecular properties of in vivo hippocampal synaptic plasticity are altered in the absence of key synaptic matrix molecules. Hippocampus 27(8):920–933.  https://doi.org/10.1002/hipo.22742 Google Scholar
  47. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) Fsl Neuroimage 62(2):782–790Google Scholar
  48. Karakis I, Pase MP, Beiser A, Booth SL, Jacques PF, Rogers G, DeCarli C, Vasan RS, Wang TJ, Himali JJ, Annweiler C, Seshadri S (2016) Association of serum vitamin D with the risk of incident dementia and subclinical indices of brain aging: the framingham heart study. J Alzheimer’s Dis: JAD 51(2):451–461.  https://doi.org/10.3233/jad-150991 Google Scholar
  49. Kochlamazashvili G, Henneberger C, Bukalo O, Dvoretskova E, Senkov O, Lievens PM, Westenbroek R, Engel AK, Catterall WA, Rusakov DA, Schachner M, Dityatev A (2010) The extracellular matrix molecule hyaluronic acid regulates hippocampal synaptic plasticity by modulating postsynaptic L-type Ca(2+) channels. Neuron 67(1):116–128.  https://doi.org/10.1016/j.neuron.2010.05.030 Google Scholar
  50. Kurniawan ND, Richards KL, Yang Z, She D, Ullmann JF, Moldrich RX, Liu S, Yaksic JU, Leanage G, Kharatishvili I, Wimmer V, Calamante F, Galloway GJ, Petrou S, Reutens DC (2014) Visualization of mouse barrel cortex using ex-vivo track density imaging. NeuroImage 87:465–475.  https://doi.org/10.1016/j.neuroimage.2013.09.030 Google Scholar
  51. Kuzma E, Soni M, Littlejohns TJ, Ranson JM, van Schoor NM, Deeg DJ, Comijs H, Chaves PH, Kestenbaum BR, Kuller LH, Lopez OL, Becker JT, Langa KM, Henley WE, Lang IA, Ukoumunne OC, Llewellyn DJ (2016) Vitamin D and memory decline: two population-based prospective studies. J Alzheimer’s Dis: JAD 50(4):1099–1108.  https://doi.org/10.3233/jad-150811 Google Scholar
  52. Latimer CS, Brewer LD, Searcy JL, Chen K-C, Popović J, Kraner SD, Thibault O, Blalock EM, Landfield PW, Porter NM (2014) Vitamin D prevents cognitive decline and enhances hippocampal synaptic function in aging rats. Proc Natl Acad Sci 111(41):E4359–E4366.  https://doi.org/10.1073/pnas.1404477111 Google Scholar
  53. Lensjo KK, Christensen AC, Tennoe S, Fyhn M, Hafting T (2017) Differential expression and cell-type specificity of perineuronal nets in hippocampus, medial entorhinal cortex, and visual cortex examined in the rat and mouse. eNeuro 4 (3).  https://doi.org/10.1523/eneuro.0379-16.2017
  54. Lepage M, Habib R, Tulving E (1998) Hippocampal PET activations of memory encoding and retrieval: the HIPER model. Hippocampus 8(4):313–322. doi: 10.1002/(SICI)1098-1063(1998)8:4<313::AID-HIPO1>3.0.CO;2-IGoogle Scholar
  55. Lesburgueres E, Sparks FT, O’Reilly KC, Fenton AA (2016) Active place avoidance is no more stressful than unreinforced exploration of a familiar environment. Hippocampus 26(12):1481–1485.  https://doi.org/10.1002/hipo.22666 Google Scholar
  56. Littlejohns TJ, Kos K, Henley WE, Lang IA, Annweiler C, Beauchet O, Chaves PH, Kestenbaum BR, Kuller LH, Langa KM, Lopez OL, Llewellyn DJ (2016) Vitamin D and risk of neuroimaging abnormalities. PloS One 11(5):e0154896.  https://doi.org/10.1371/journal.pone.0154896 Google Scholar
  57. Liu C, Li Y, Edwards TJ, Kurniawan ND, Richards LJ, Jiang T (2016) Altered structural connectome in adolescent socially isolated mice. NeuroImage 139:259–270.  https://doi.org/10.1016/j.neuroimage.2016.06.037 Google Scholar
  58. Lobellova V, Brichtova E, Petrasek T, Vales K, Stuchlik A (2015) Higher doses of (+)MK-801 (dizocilpine) induced mortality and procedural but not cognitive deficits in delayed testing in the active place avoidance with reversal on the Carousel. Academia Scientiarum Bohemoslovaca 64(2):269–275Google Scholar
  59. Mathiasen ML, Dillingham CM, Kinnavane L, Powell AL, Aggleton JP (2017) Asymmetric cross-hemispheric connections link the rat anterior thalamic nuclei with the cortex and hippocampal formation. Neuroscience 349:128–143.  https://doi.org/10.1016/j.neuroscience.2017.02.026 Google Scholar
  60. McAuliffe MJ, Lalonde FM, McGarry D, Gandler W, Csaky K, Trus BL Medical image processing, analysis and visualization in clinical research. In: Computer-Based Medical Systems, 2001. CBMS 2001. Proceedings. 14th IEEE Symposium on (2001) IEEE, pp 381–386Google Scholar
  61. McCormick C, Ciaramelli E, De Luca F, Maguire EA (2017) Comparing and contrasting the cognitive effects of hippocampal and ventromedial prefrontal cortex damage: a review of human lesion studies. Neuroscience.  https://doi.org/10.1016/j.neuroscience.2017.07.066 Google Scholar
  62. Mercer A, Eastlake K, Trigg HL, Thomson AM (2012) Local circuitry involving parvalbumin-positive basket cells in the CA2 region of the hippocampus. Hippocampus 22(1):43–56.  https://doi.org/10.1002/hipo.20841 Google Scholar
  63. Moon Y, Moon WJ, Kwon H, Lee JM, Han SH (2015) Vitamin D deficiency disrupts neuronal integrity in cognitively impaired patients. J Alzheimer’s Dis: JAD 45(4):1089–1096.  https://doi.org/10.3233/jad-143063 Google Scholar
  64. Morawski M, Bruckner MK, Riederer P, Bruckner G, Arendt T (2004) Perineuronal nets potentially protect against oxidative stress. Exp Neurol 188(2):309–315.  https://doi.org/10.1016/j.expneurol.2004.04.017 Google Scholar
  65. Morikawa S, Ikegaya Y, Narita M, Tamura H (2017) Activation of perineuronal net-expressing excitatory neurons during associative memory encoding and retrieval. Sci Rep 7:46024.  https://doi.org/10.1038/srep46024 Google Scholar
  66. Moscarello JM, LeDoux JE (2013) Active avoidance learning requires prefrontal suppression of amygdala-mediated defensive reactions. J Neurosci 33(9):3815–3823.  https://doi.org/10.1523/jneurosci.2596-12.2013 Google Scholar
  67. Naveilhan P, Neveu I, Wion D, Brachet P (1996) 1,25-Dihydroxyvitamin D3, an inducer of glial cell line-derived neurotrophic factor. Neuroreport 7(13):2171–2175Google Scholar
  68. Ognjanovski N, Maruyama D, Lashner N, Zochowski M, Aton SJ (2014) CA1 hippocampal network activity changes during sleep-dependent memory consolidation. Front Syst Neurosci 8:61.  https://doi.org/10.3389/fnsys.2014.00061 Google Scholar
  69. Peixoto-Santos JE, Velasco TR, Galvis-Alonso OY, Araujo D, Kandratavicius L, Assirati JA, Carlotti CG, Scandiuzzi RC, Santos AC, Leite JP (2015) Temporal lobe epilepsy patients with severe hippocampal neuron loss but normal hippocampal volume: extracellular matrix molecules are important for the maintenance of hippocampal volume. Epilepsia 56(10):1562–1570.  https://doi.org/10.1111/epi.13082 Google Scholar
  70. Ramirez F, Moscarello JM, LeDoux JE, Sears RM (2015) Active avoidance requires a serial basal amygdala to nucleus accumbens shell circuit. J Neurosci 35(8):3470–3477.  https://doi.org/10.1523/jneurosci.1331-14.2015 Google Scholar
  71. Saad K, Abdel-Rahman AA, Elserogy YM, Al-Atram AA, Cannell JJ, Bjorklund G, Abdel-Reheim MK, Othman HA, El-Houfey AA, Abd El-Aziz NH, Abd El-Baseer KA, Ahmed AE, Ali AM (2016) Vitamin D status in autism spectrum disorders and the efficacy of vitamin D supplementation in autistic children. Nutr Neurosci 19(8):346–351.  https://doi.org/10.1179/1476830515y.0000000019 Google Scholar
  72. Samuelsson AM, Jennische E, Hansson HA, Holmang A (2006) Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABA(A) dysregulation and impaired spatial learning. Am J Physiol Regul Integr Compar Physiol 290(5):R1345–R1356.  https://doi.org/10.1152/ajpregu.00268.2005 Google Scholar
  73. Scheff SW, Price DA, Schmitt FA, Mufson EJ (2006) Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 27(10):1372–1384.  https://doi.org/10.1016/j.neurobiolaging.2005.09.012 Google Scholar
  74. Scholz J, Tomassini V, Johansen-Berg H (2014) Chap. 14—individual differences in white matter microstructure in the healthy brain. In: Diffusion MRI. Academic Press, San Diego, pp 301–316.  https://doi.org/10.1016/B978-0-12-396460-1.00014-7 Google Scholar
  75. Sepehrband F, Clark KA, Ullmann JF, Kurniawan ND, Leanage G, Reutens DC, Yang Z (2015) Brain tissue compartment density estimated using diffusion-weighted MRI yields tissue parameters consistent with histology. Hum Brain Map 36(9):3687–3702.  https://doi.org/10.1002/hbm.22872 Google Scholar
  76. Shivakumar V, Kalmady SV, Amaresha AC, Jose D, Narayanaswamy JC, Agarwal SM, Joseph B, Venkatasubramanian G, Ravi V, Keshavan MS, Gangadhar BN (2015) Serum vitamin D and hippocampal gray matter volume in schizophrenia. Psychiatry Res: Neuroimaging 233(2):175–179.  https://doi.org/10.1016/j.pscychresns.2015.06.006 Google Scholar
  77. Spedding S (2014) Vitamin D and depression: a systematic review and meta-analysis comparing studies with and without biological flaws. Nutrients 6(4):1501–1518.  https://doi.org/10.3390/nu6041501 Google Scholar
  78. Stuchlik A, Petrasek T, Prokopova I, Holubova K, Hatalova H, Vales K, Kubik S, Dockery C, Wesierska M (2013) Place avoidance tasks as tools in the behavioral neuroscience of learning and memory. Physiological research /. Academia Scientiarum Bohemoslovaca 62(Suppl 1):S1–Ss19Google Scholar
  79. Taghizadeh M, Talaei SA, Salami M (2013) Vitamin D deficiency impairs spatial learning in adult rats. Iran Biomed J 17(1):42–48Google Scholar
  80. Takeuchi Y, Matsumoto T, Ogata E, Shishiba Y (1989) 1,25-Dihydroxyvitamin D3 inhibits synthesis and enhances degradation of proteoglycans in osteoblastic cells. J Biol Chem 264(31):18407–18413Google Scholar
  81. Tournier JD, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35(4):1459–1472.  https://doi.org/10.1016/j.neuroimage.2007.02.016 Google Scholar
  82. Tsien RY (2013) Very long-term memories may be stored in the pattern of holes in the perineuronal net. Proc Natl Acad Sci USA 110(30):12456–12461.  https://doi.org/10.1073/pnas.1310158110 Google Scholar
  83. van Schoor NM, Comijs HC, Llewellyn DJ, Lips P (2016) Cross-sectional and longitudinal associations between serum 25-hydroxyvitamin D and cognitive functioning. Int Psychogeriatr 28(5):759–768.  https://doi.org/10.1017/s1041610215002252 Google Scholar
  84. Vicente P, Herr M, Mahieux F, Ankri J (2015) Vitamin D and neuropsychological assessment of cognitive functions: a study of their relationships in a sample of 244 patients attending a memory clinic. Geriatrie et psychologie neuropsychiatrie du vieillissement 13(4):452–461.  https://doi.org/10.1684/pnv.2015.0579 Google Scholar
  85. Virley D, Ridley RM, Sinden JD, Kershaw TR, Harland S, Rashid T, French S, Sowinski P, Gray JA, Lantos PL, Hodges H (1999) Primary CA1 and conditionally immortal MHP36 cell grafts restore conditional discrimination learning and recall in marmosets after excitotoxic lesions of the hippocampal CA1 field. Brain: J Neurol 122(Pt 12):2321–2335Google Scholar
  86. Volman V, Behrens MM, Sejnowski TJ (2011) Downregulation of parvalbumin at cortical GABA synapses reduces network gamma oscillatory activity. J Neurosci 31(49):18137–18148.  https://doi.org/10.1523/jneurosci.3041-11.2011 Google Scholar
  87. Vukovic J, Borlikova GG, Ruitenberg MJ, Robinson GJ, Sullivan RK, Walker TL, Bartlett PF (2013) Immature doublecortin-positive hippocampal neurons are important for learning but not for remembering. J Neurosci 33(15):6603–6613.  https://doi.org/10.1523/JNEUROSCI.3064-12.2013 Google Scholar
  88. Wesierska M, Dockery C, Fenton AA (2005) Beyond memory, navigation, and inhibition: behavioral evidence for hippocampus-dependent cognitive coordination in the rat. J Neurosci 25(9):2413–2419.  https://doi.org/10.1523/jneurosci.3962-04.2005 Google Scholar
  89. Willems JGP, Wadman WJ, Cappaert NLM (2018) Parvalbumin interneuron mediated feedforward inhibition controls signal output in the deep layers of the perirhinal-entorhinal cortex. Hippocampus 28(4):281–296.  https://doi.org/10.1002/hipo.22830 Google Scholar
  90. Wlodarczyk J, Mukhina I, Kaczmarek L, Dityatev A (2011) Extracellular matrix molecules, their receptors, and secreted proteases in synaptic plasticity. Dev Neurobiol 71(11):1040–1053.  https://doi.org/10.1002/dneu.20958 Google Scholar
  91. Yamada J, Jinno S (2017) Molecular heterogeneity of aggrecan-based perineuronal nets around five subclasses of parvalbumin-expressing neurons in the mouse hippocampus. J Compar Neurol 525(5):1234–1249.  https://doi.org/10.1002/cne.24132 Google Scholar
  92. Yamada J, Nadanaka S, Kitagawa H, Takeuchi K, Jinno S (2018) Increased synthesis of chondroitin sulfate proteoglycan promotes adult hippocampal neurogenesis in response to enriched environment. J Neurosci 38(39):8496–8513.  https://doi.org/10.1523/JNEUROSCI.0632-18.2018 Google Scholar
  93. Zalesky A, Fornito A, Bullmore ET (2010) Network-based statistic: identifying differences in brain networks. NeuroImage 53(4):1197–1207.  https://doi.org/10.1016/j.neuroimage.2010.06.041 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Queensland Brain InstituteThe University of QueenslandBrisbaneAustralia
  2. 2.Centre for Advanced ImagingThe University of QueenslandBrisbaneAustralia
  3. 3.Queensland Centre for Mental Health ResearchWacolAustralia

Personalised recommendations