Brain Structure and Function

, Volume 224, Issue 2, pp 795–810 | Cite as

Accuracy and bias of automatic hippocampal segmentation in children and adolescents

  • Annika Herten
  • Kerstin Konrad
  • Helga Krinzinger
  • Jochen Seitz
  • Georg G. von PolierEmail author
Original Article


The hippocampus (Hc) is of great importance in various psychiatric diseases in adults, children and adolescents. Automated Hc segmentation has been widely used in adults, implying sufficient overlap with manual segmentation. However, estimation biases related to the Hc volume have been pointed out. This may particularly apply to children who show age-related Hc volume changes, thus, questioning the accuracy of automated Hc segmentation in this age group. The aim of this study was to compare manual segmentation with automated segmentation using the widely adopted FreeSurfer (FS) and MAGeT-Brain software. In 70 children and adolescents (5–16 years, mean age 10.6 years), T1-weighted images were acquired on one of two identical 3T scanners. Automated segmentation was performed using the FS subcortical segmentation, the FS hippocampal subfields segmentation and the MAGeT-Brain software. In comparison with manual segmentation, volume differences, Dice similarity coefficient (DSC), Bland–Altman plot, intraclass correlation coefficient (ICC) and left–right consistency of automated segmentation were calculated. The average percentage of volume differences (PVD) with manual segmentation was 56.8% for FS standard segmentation, 32.2% for FS subfield segmentation and − 15.6% for MAGeT-Brain. The FS Hc subfields segmentation (left/right DSC = 0.86/0.87) and MAGeT-Brain (both hemispheres DSC = 0.91) resulted in a higher volume overlap with manual segmentation compared with the FS subcortical segmentation (DSC = 0.79/0.78). In children aged 5–10.5 years, MAGeT-Brain yielded the highest overlap (DSC = 0.92/0.93). Contrary volume estimation biases were detected in FS and MAGeT-Brain: FS showed larger volume overestimation in smaller Hc volumes, while MAGeT-Brain showed more pronounced volume underestimation in larger Hc volumes. While automated Hc segmentation using FS hippocampal subfields or MAGeT-Brain resulted in adequate volume overlap with manual segmentation, estimation biases compromised the reliability of automated procedures in children and adolescents.


Pediatric population FreeSurfer MAGeT-Brain Limbic system Morphometry Manual segmentation 



This work was supported by the Federal Ministry of Education and Research [grant number 01GJ0808]; the “Interdisciplinary center for clinical studies, IZKF RWTH Aachen University” [grant number N4-1]. Automatic segmentations were performed with computing resources granted by RWTH Aachen University under project rwth0151. The authors wish to thank all children and their parents for participating in this study.

Compliance with ethical standards

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

429_2018_1802_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 20 KB)


  1. Ahdidan J, Hviid LB, Chakravarty MM, Ravnkilde B, Rosenberg R, Rodell A, Stødkilde-Jørgensen H, Videbech P (2011) Longitudinal MR study of brain structure and hippocampus volume in major depressive disorder. Acta Psychiatr Scand 123(3):211–219. Google Scholar
  2. Akhondi-Asl A, Jafari-Khouzani K, Elisevich K, Soltanian-Zadeh H (2011) Hippocampal volumetry for lateralization of temporal lobe epilepsy: automated versus manual methods. Neuroimage 54(Suppl 1):S218–S226. Google Scholar
  3. Akudjedu TN, Nabulsi L, Makelyte M, Scanlon C, Hehir S, Casey H, Ambati S, Kenney J, O’Donoghue S, McDermott E, Kilmartin L, Dockery P, McDonald C, Hallahan B, Cannon DM (2018) A comparative study of segmentation techniques for the quantification of brain subcortical volume. Brain Imaging Behav. Google Scholar
  4. Boedhoe PS, Schmaal L, Abe Y, Ameis SH, Arnold PD, Batistuzzo MC, Benedetti F, Beucke JC, Bollettini I, Bose A, Brem S, Calvo A, Cheng Y, Cho KI, Dallaspezia S, Denys D, Fitzgerald KD, Fouche JP, Giménez M, Gruner P, Hanna GL, Hibar DP, Hoexter MQ, Hu H, Huyser C, Ikari K, Jahanshad N, Kathmann N, Kaufmann C, Koch K, Kwon JS, Lazaro L, Liu Y, Lochner C, Marsh R, Martínez-Zalacaín I, Mataix-Cols D, Menchón JM, Minuzzi L, Nakamae T, Nakao T, Narayanaswamy JC, Piras F, Pittenger C, Reddy YC, Sato JR, Simpson HB, Soreni N, Soriano-Mas C, Spalletta G, Stevens MC, Szeszko PR, Tolin DF, Venkatasubramanian G, Walitza S, Wang Z, van Wingen GA, Xu J, Xu X, Yun JY, Zhao Q, Thompson PM, Stein DJ, van den Heuvel OA, Group EOW (2017) Distinct subcortical volume alterations in pediatric and adult OCD: a worldwide meta- and mega-analysis. Am J Psychiatry 174(1):60–69. Google Scholar
  5. Casey BJ, Jones RM, Hare TA (2008) The adolescent brain. Ann N Y Acad Sci 1124(1):111–126. doiGoogle Scholar
  6. Chakravarty MM, Steadman P, van Eede MC, Calcott RD, Gu V, Shaw P, Raznahan A, Collins DL, Lerch JP (2013) Performing label-fusion-based segmentation using multiple automatically generated templates. Hum Brain Mapp 34(10):2635–2654. Google Scholar
  7. Cherbuin N, Anstey KJ, Réglade-Meslin C, Sachdev PS (2009) In vivo hippocampal measurement and memory: a comparison of manual tracing and automated segmentation in a large community-based sample. PLoS One 4(4):e5265. Google Scholar
  8. Chupin M, Gérardin E, Cuingnet R, Boutet C, Lemieux L, Lehéricy S, Benali H, Garnero L, Colliot O, Initiative AsDN (2009) Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI. Hippocampus 19(6):579–587. Google Scholar
  9. Collins DL, Pruessner JC (2010) Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion. Neuroimage 52(4):1355–1366Google Scholar
  10. Csernansky JG, Wang L, Jones D, Rastogi-Cruz D, Posener JA, Heydebrand G, Miller JP, Miller MI (2002) Hippocampal deformities in schizophrenia characterized by high dimensional brain mapping. Am J Psychiatry 159(12):2000–2006Google Scholar
  11. Decker AL, Szulc KU, Bouffet E, Laughlin S, Chakravarty MM, Skocic J, de Medeiros CB, Mabbott DJ (2017) Smaller hippocampal subfield volumes predict verbal associative memory in pediatric brain tumor survivors. Hippocampus. Google Scholar
  12. Dice LR (1945) Measures of the Amount of Ecologic Association Between Species. Ecology 26(3):297–302. Google Scholar
  13. Dill V, Franco AR, Pinho MS (2015) Automated methods for hippocampus segmentation: the evolution and a review of the state of the art. Neuroinformatics 13(2):133–150. Google Scholar
  14. Doring TM, Kubo TT, Cruz LC, Juruena MF, Fainberg J, Domingues RC, Gasparetto EL (2011) Evaluation of hippocampal volume based on MR imaging in patients with bipolar affective disorder applying manual and automatic segmentation techniques. J Magn Reson Imaging 33(3):565–572. Google Scholar
  15. Duvernoy HM (1988) Sectional anatomy. In: The human hippocampus. Springer, New York, pp 61–153Google Scholar
  16. Fischl B (2012) FreeSurfer. Neuroimage 62(2):774–781Google Scholar
  17. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, Van Der Kouwe A, Killiany R, Kennedy D, Klaveness S (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3):341–355Google Scholar
  18. Geuze E, Vermetten E, Bremner JD (2005) MR-based in vivo hippocampal volumetrics: 2. Findings in neuropsychiatric disorders. Mol Psychiatry 10(2):160–184. Google Scholar
  19. Giavarina D (2015) Understanding Bland Altman analysis. Biochem Med 25(2):141–151. Google Scholar
  20. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, Rapoport JL (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2(10):861–863. Google Scholar
  21. Giedd JN, Clasen LS, Lenroot R, Greenstein D, Wallace GL, Ordaz S, Molloy EA, Blumenthal JD, Tossell JW, Stayer C, Samango-Sprouse CA, Shen D, Davatzikos C, Merke D, Chrousos GP (2006) Puberty-related influences on brain development. Mol Cell Endocrinol 254(Supplement C):154–162. Google Scholar
  22. Giedd JN, Raznahan A, Alexander-Bloch A, Schmitt E, Gogtay N, Rapoport JL (2015) Child psychiatry branch of the national institute of mental health longitudinal structural magnetic resonance imaging study of human brain development. Neuropsychopharmacology 40(1):43–49. Google Scholar
  23. Goddings A-L, Mills KL, Clasen LS, Giedd JN, Viner RM, Blakemore S-J (2014) The influence of puberty on subcortical brain development. NeuroImage 88(Supplement C):242–251. Google Scholar
  24. González-Villà S, Oliver A, Valverde S, Wang L, Zwiggelaar R, Lladó X (2016) A review on brain structures segmentation in magnetic resonance imaging. Artif Intell Med 73:45–69. Google Scholar
  25. Guo T, Winterburn JL, Pipitone J, Duerden EG, Park MT, Chau V, Poskitt KJ, Grunau RE, Synnes A, Miller SP, Mallar Chakravarty M (2015) Automatic segmentation of the hippocampus for preterm neonates from early-in-life to term-equivalent age. Neuroimage Clin 9:176–193. Google Scholar
  26. Heckers S (2001) Neuroimaging studies of the hippocampus in schizophrenia. Hippocampus 11(5):520–528. Google Scholar
  27. Hogan RE, Wang L, Bertrand ME, Willmore LJ, Bucholz RD, Nassif AS, Csernansky JG (2006) Predictive value of hippocampal MR imaging-based high-dimensional mapping in mesial temporal epilepsy: preliminary findings. AJNR Am J Neuroradiol 27(10):2149–2154Google Scholar
  28. Hoogman M, Bralten J, Hibar DP, Mennes M, Zwiers MP, Schweren LSJ, van Hulzen KJE, Medland SE, Shumskaya E, Jahanshad N, Zeeuw P, Szekely E, Sudre G, Wolfers T, Onnink AMH, Dammers JT, Mostert JC, Vives-Gilabert Y, Kohls G, Oberwelland E, Seitz J, Schulte-Ruther M, Ambrosino S, Doyle AE, Hovik MF, Dramsdahl M, Tamm L, van Erp TGM, Dale A, Schork A, Conzelmann A, Zierhut K, Baur R, McCarthy H, Yoncheva YN, Cubillo A, Chantiluke K, Mehta MA, Paloyelis Y, Hohmann S, Baumeister S, Bramati I, Mattos P, Tovar-Moll F, Douglas P, Banaschewski T, Brandeis D, Kuntsi J, Asherson P, Rubia K, Kelly C, Martino AD, Milham MP, Castellanos FX, Frodl T, Zentis M, Lesch KP, Reif A, Pauli P, Jernigan TL, Haavik J, Plessen KJ, Lundervold AJ, Hugdahl K, Seidman LJ, Biederman J, Rommelse N, Heslenfeld DJ, Hartman CA, Hoekstra PJ, Oosterlaan J, Polier GV, Konrad K, Vilarroya O, Ramos-Quiroga JA, Soliva JC, Durston S, Buitelaar JK, Faraone SV, Shaw P, Thompson PM, Franke B (2017) Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. Lancet Psychiatry 4(4):310–319. Google Scholar
  29. Iglesias JE, Sabuncu MR, Leemput KV, for the Alzheimer’s Disease Neuroimaging I (2013) Improved inference in bayesian segmentation using Monte Carlo sampling: application to hippocampal subfield volumetry. Medical Image Anal 17(7):766–778. Google Scholar
  30. Iglesias JE, Augustinack JC, Nguyen K, Player CM, Player A, Wright M, Roy N, Frosch MP, McKee AC, Wald LL, Fischl B, Van Leemput K, Initiative AsDN (2015) A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. Neuroimage 115:117–137. Google Scholar
  31. Jack CR, Barkhof F, Bernstein MA, Cantillon M, Cole PE, Decarli C, Dubois B, Duchesne S, Fox NC, Frisoni GB, Hampel H, Hill DL, Johnson K, Mangin JF, Scheltens P, Schwarz AJ, Sperling R, Suhy J, Thompson PM, Weiner M, Foster NL (2011) Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for Alzheimer’s disease. Alzheimers Dement 7(4):474–485.e474. Google Scholar
  32. Jancke L, Merillat S, Liem F, Hanggi J (2015) Brain size, sex, and the aging brain. Hum Brain Mapp 36(1):150–169. Google Scholar
  33. Koch GG (2006) Intraclass correlation coefficient. In: Kotz S, Balakrishnan N, Read CB, Vidakovic B (eds) Encyclopedia of statistical sciences, 2nd edn, Wiley-Interscience, Hoboken, NJGoogle Scholar
  34. Konrad C, Ukas T, Nebel C, Arolt V, Toga AW, Narr KL (2009) Defining the human hippocampus in cerebral magnetic resonance images—an overview of current segmentation protocols. Neuroimage 47(4):1185–1195. Google Scholar
  35. Koolschijn PCMP, van Ijzendoorn MH, Bakermans-Kranenburg MJ, Crone EA (2013) Hippocampal volume and internalizing behavior problems in adolescence. Eur Neuropsychopharmacol 23(7):622–628. Google Scholar
  36. Krouwer JS (2008) Why Bland-Altman plots should use X, not (Y + X)/2 when X is a reference method. Stat Med 27(5):778–780. Google Scholar
  37. Lee JK, Nordahl CW, Amaral DG, Lee A, Solomon M, Ghetti S (2015) Assessing hippocampal development and language in early childhood: evidence from a new application of the automatic segmentation adapter tool. Hum Brain Mapp. Google Scholar
  38. Lyden H, Gimbel SI, Del Piero L, Tsai AB, Sachs ME, Kaplan JT, Margolin G, Saxbe D (2016) Associations between family adversity and brain volume in adolescence: manual vs. automated brain segmentation yields different results. Front Neurosci 10:398. Google Scholar
  39. Maltbie E, Bhatt K, Paniagua B, Smith RG, Graves MM, Mosconi MW, Peterson S, White S, Blocher J, El-Sayed M, Hazlett HC, Styner MA (2012) Asymmetric bias in user guided segmentations of brain structures. Neuroimage 59(2):1315–1323. Google Scholar
  40. Morey RA, Petty CM, Xu Y, Hayes JP, Wagner HR, Lewis DV, LaBar KS, Styner M, McCarthy G (2009a) A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes. Neuroimage 45(3):855–866. Google Scholar
  41. Morey RA, Petty CM, Xu Y, Hayes JP, Wagner HR, Lewis DV, Labar KS, Styner M, McCarthy G (2009b) Rebuttal to Hasan and Pedraza in comments and controversies: “improving the reliability of manual and automated methods for hippocampal and amygdala volume measurements”. Neuroimage 48(3):499–500. Google Scholar
  42. Morey RA, Gold AL, LaBar KS, Beall SK, Brown VM, Haswell CC, Nasser JD, Wagner HR, McCarthy G, Workgroup M-AM (2012) Amygdala volume changes in posttraumatic stress disorder in a large case-controlled veterans group. Arch Gen Psychiatry 69(11):1169–1178. Google Scholar
  43. Moscovitch M, Rosenbaum RS, Gilboa A, Addis DR, Westmacott R, Grady C, McAndrews MP, Levine B, Black S, Winocur G, Nadel L (2005) Functional neuroanatomy of remote episodic, semantic and spatial memory: a unified account based on multiple trace theory. J Anat 207(1):35–66. Google Scholar
  44. Nestor SM, Gibson E, Gao FQ, Kiss A, Black SE, Initiative ftAsDN (2012) A direct morphometric comparison of five labeling protocols for multi-atlas driven automatic segmentation of the hippocampus in Alzheimer’s disease. Neuroimage 66C:50–70. Google Scholar
  45. Nugent TF, Herman DH, Ordonez A, Greenstein D, Hayashi KM, Lenane M, Clasen L, Jung D, Toga AW, Giedd JN, Rapoport JL, Thompson PM, Gogtay N (2007) Dynamic mapping of hippocampal development in childhood onset schizophrenia. Schizophr Res 90(1–3):62–70. Google Scholar
  46. Nugent AC, Luckenbaugh DA, Wood SE, Bogers W, Zarate CA, Drevets WC (2013) Automated subcortical segmentation using FIRST: test–retest reliability, interscanner reliability, and comparison to manual segmentation. Hum Brain Mapp 34(9):2313–2329. Google Scholar
  47. Okada N, Fukunaga M, Yamashita F, Koshiyama D, Yamamori H, Ohi K, Yasuda Y, Fujimoto M, Watanabe Y, Yahata N, Nemoto K, Hibar DP, van Erp TG, Fujino H, Isobe M, Isomura S, Natsubori T, Narita H, Hashimoto N, Miyata J, Koike S, Takahashi T, Yamasue H, Matsuo K, Onitsuka T, Iidaka T, Kawasaki Y, Yoshimura R, Suzuki M, Turner JA, Takeda M, Thompson PM, Ozaki N, Kasai K, Hashimoto R (2016) Abnormal asymmetries in subcortical brain volume in schizophrenia. Mol Psychiatry 21(10):1460–1466. Google Scholar
  48. Pardoe HR, Pell GS, Abbott DF, Jackson GD (2009) Hippocampal volume assessment in temporal lobe epilepsy: how good is automated segmentation? Epilepsia 50(12):2586–2592. Google Scholar
  49. Patel S, Park MTM, Devenyi GA, Patel R, Masellis M, Knight J, Chakravarty MM (2017) Heritability of hippocampal subfield volumes using a twin and non-twin siblings design. Hum Brain Mapp 38:4337–4352Google Scholar
  50. Pipitone J, Park MT, Winterburn J, Lett TA, Lerch JP, Pruessner JC, Lepage M, Voineskos AN, Chakravarty MM, Initiative AsDN (2014) Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. Neuroimage 101:494–512. Google Scholar
  51. Qin S, Cho S, Chen T, Rosenberg-Lee M, Geary DC, Menon V (2014) Hippocampal-neocortical functional reorganization underlies children’s cognitive development. Nature neuroscience 17(9):1263–1269. Google Scholar
  52. Raghunathan TE, Rosenthal R, Rubin DB (1996) Comparing correlated but nonoverlapping correlations. Psychol Methods 1(2):178Google Scholar
  53. Sánchez-Benavides G, Gómez-Ansón B, Sainz A, Vives Y, Delfino M, Peña-Casanova J (2010) Manual validation of FreeSurfer’s automated hippocampal segmentation in normal aging, mild cognitive impairment, and Alzheimer Disease subjects. Psychiatry Res 181(3):219–225. Google Scholar
  54. Schmidt MF, Storrs JM, Freeman KB, Jack CR, Turner ST, Griswold ME, Mosley TH (2018) A comparison of manual tracing and FreeSurfer for estimating hippocampal volume over the adult lifespan. Hum Brain Mapp 39(6):2500–2513. doiGoogle Scholar
  55. Schoemaker D, Buss C, Head K, Sandman CA, Davis EP, Chakravarty MM, Gauthier S, Pruessner JC (2016) Hippocampus and amygdala volumes from magnetic resonance images in children: assessing accuracy of FreeSurfer and FSL against manual segmentation. Neuroimage 129:1–14. Google Scholar
  56. Schumann CM, Hamstra J, Goodlin-Jones BL, Lotspeich LJ, Kwon H, Buonocore MH, Lammers CR, Reiss AL, Amaral DG (2004) The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J Neurosci 24(28):6392–6401. Google Scholar
  57. Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW (1996) Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA 93(9):3908–3913Google Scholar
  58. Shen L, Saykin AJ, Kim S, Firpi HA, West JD, Risacher SL, McDonald BC, McHugh TL, Wishart HA, Flashman LA (2010) Comparison of manual and automated determination of hippocampal volumes in MCI and early AD. Brain Imaging Behav 4(1):86–95. Google Scholar
  59. Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420–428Google Scholar
  60. Squire LR, Stark CE, Clark RE (2004) The medial temporal lobe. Annu Rev Neurosci 27:279–306. Google Scholar
  61. Sussman D, Leung RC, Vogan VM, Lee W, Trelle S, Lin S, Cassel DB, Chakravarty MM, Lerch JP, Anagnostou E, Taylor MJ (2015) The autism puzzle: diffuse but not pervasive neuroanatomical abnormalities in children with ASD. NeuroImage Clin 8(Supplement C):170–179. Google Scholar
  62. Tae WS, Kim SS, Lee KU, Nam EC, Kim KW (2008) Validation of hippocampal volumes measured using a manual method and two automated methods (FreeSurfer and IBASPM) in chronic major depressive disorder. Neuroradiology 50(7):569–581. Google Scholar
  63. Tannous J, Amaral-Silva H, Cao B, Wu MJ, Zunta-Soares GB, Kazimi I, Zeni C, Mwangi B, Soares JC (2018) Hippocampal subfield volumes in children and adolescents with mood disorders. J Psychiatr Res 101:57–62. Google Scholar
  64. Teicher MH, Anderson CM, Polcari A (2012) Childhood maltreatment is associated with reduced volume in the hippocampal subfields CA3, dentate gyrus, and subiculum. Proc Natl Acad Sci USA 109(9):E563–E572. Google Scholar
  65. Terwee CB, Bot SD, de Boer MR, van der Windt DA, Knol DL, Dekker J, Bouter LM, de Vet HC (2007) Quality criteria were proposed for measurement properties of health status questionnaires. J Clin Epidemiol 60(1):34–42Google Scholar
  66. Treadway MT, Waskom ML, Dillon DG, Holmes AJ, Park MTM, Chakravarty MM, Dutra SJ, Polli FE, Iosifescu DV, Fava M, Gabrieli JDE, Pizzagalli DA (2015) Illness progression, recent stress, and morphometry of hippocampal subfields and medial prefrontal cortex in major depression. Biol Psychiatry 77(3):285–294. Google Scholar
  67. Van Leemput K, Bakkour A, Benner T, Wiggins G, Wald LL, Augustinack J, Dickerson BC, Golland P, Fischl B (2009) Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI. Hippocampus 19(6):549–557. Google Scholar
  68. Wechsler D (1991) Wechsler intelligence scale for children, Third edn. Psychological Corporation, San AntonioGoogle Scholar
  69. Wechsler D (1999) Wechsler abbreviated scale of intelligence. Harcourt Assessment, San AntonioGoogle Scholar
  70. Wenger E, Mårtensson J, Noack H, Bodammer NC, Kühn S, Schaefer S, Heinze HJ, Düzel E, Bäckman L, Lindenberger U, Lövdén M (2014) Comparing manual and automatic segmentation of hippocampal volumes: reliability and validity issues in younger and older brains. Hum Brain Mapp 35(8):4236–4248. Google Scholar
  71. Whelan CD, Hibar DP, van Velzen LS, Zannas AS, Carrillo-Roa T, McMahon K, Prasad G, Kelly S, Faskowitz J, Iglesias JE (2016) Heritability and reliability of automatically segmented human hippocampal formation subregions. Neuroimage 128:125–137Google Scholar
  72. Wierenga L, Langen M, Ambrosino S, van Dijk S, Oranje B, Durston S (2014) Typical development of basal ganglia, hippocampus, amygdala and cerebellum from age 7 to 24. Neuroimage 96:67–72. Google Scholar
  73. Winterburn JL, Pruessner JC, Chavez S, Schira MM, Lobaugh NJ, Voineskos AN, Chakravarty MM (2013) A novel in vivo atlas of human hippocampal subfields using high-resolution 3 T magnetic resonance imaging. Neuroimage 74:254–265. Google Scholar
  74. Wisse LE, Biessels GJ, Geerlings MI (2014) A critical appraisal of the hippocampal subfield segmentation package in FreeSurfer. Front Aging Neurosci 6:261. Google Scholar
  75. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128. Google Scholar
  76. Yushkevich PA, Avants BB, Pluta J, Das S, Minkoff D, Mechanic-Hamilton D, Glynn S, Pickup S, Liu W, Gee JC, Grossman M, Detre JA (2009) A high-resolution computational atlas of the human hippocampus from postmortem magnetic resonance imaging at 9.4 T. Neuroimage 44(2):385–398. Google Scholar
  77. Yushkevich PA, Amaral RS, Augustinack JC, Bender AR, Bernstein JD, Boccardi M, Bocchetta M, Burggren AC, Carr VA, Chakravarty MM, Chételat G, Daugherty AM, Davachi L, Ding SL, Ekstrom A, Geerlings MI, Hassan A, Huang Y, Iglesias JE, La Joie R, Kerchner GA, LaRocque KF, Libby LA, Malykhin N, Mueller SG, Olsen RK, Palombo DJ, Parekh MB, Pluta JB, Preston AR, Pruessner JC, Ranganath C, Raz N, Schlichting ML, Schoemaker D, Singh S, Stark CE, Suthana N, Tompary A, Turowski MM, Van Leemput K, Wagner AD, Wang L, Winterburn JL, Wisse LE, Yassa MA, Zeineh MM, (HSG) HSG (2015) Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: towards a harmonized segmentation protocol. Neuroimage 111:526–541. Google Scholar
  78. Zandifar A, Fonov V, Coupé P, Pruessner J, Collins DL, Initiative AsDN (2017) A comparison of accurate automatic hippocampal segmentation methods. Neuroimage 155:383–393. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department for NeurosurgeryUniversitätsklinikum EssenEssenGermany
  2. 2.Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyUniversity Clinic Rheinisch-Westfälische Technische Hochschule AachenAachenGermany
  3. 3.Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyUniversity Clinic Rheinisch-Westfälische Technische Hochschule AachenAachenGermany
  4. 4.JARA-Brain Institute (JBI-II) Molecular Neuroscience and Neuroimaging, Research Centre JülichJülichGermany

Personalised recommendations