Brain Structure and Function

, Volume 224, Issue 2, pp 553–566 | Cite as

Reconfiguration patterns of large-scale brain networks in motor imagery

  • Tao Zhang
  • Fei Wang
  • Mengchen Li
  • Fali Li
  • Ying Tan
  • Yangsong Zhang
  • Hang Yang
  • Bharat BiswalEmail author
  • Dezhong Yao
  • Peng XuEmail author
Original Article


Motor imagery (MI) is a multidimensional cognitive ability which recruited multiple brain networks. However, how connections and interactions are adjusted among distributed networks during MI remains unknown. To investigate these issues, we analyze the reconfiguration patterns of large-scale networks for different MI states. In our work, we explored the specific patterns of large-scale functional network organization from rest to different MI tasks using group independent component analysis (ICA), and evaluated the potential relationships between MI and the patterns of large-scale networks. The results indicate that task-related large-scale networks show the balanced relation between the within- and between-network connectivities during MI, and reveal the somatomotor network and dorsal attention network play critical roles in switching context-specific MI, and also demonstrate the change of large-scale networks organization toward effective topology could facilitate MI performance. Moreover, based on the large-scale network connectivities, we could differentiate an individual’s three states (i.e., left-hand MI, right-hand MI and rest) with an 72.73% accuracy using a multi-variant pattern analysis, suggesting that the specific patterns of large-scale network can also provide potential biomarkers to predict an individual’s behavior. Our findings contribute to the further understanding of the neural mechanisms underlying MI from large-scale network patterns and provide new biomarkers to predict the individual’s behaviors.


Motor imagery Large-scale network ICA Machine learning 



This work was supported in part by grants from the National Natural Science Foundation of China (#61522105, #81330032); Sichuan Science and Technology Program, Grant/Award Number: 2018JY0526.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study involving human participants have been approved by the local ethics committee of the institute and are in agreement with the 1964 Helsinki declaration and its later amendments.

Informed consent

All participants gave their informed consent to participate in the study.

Supplementary material

429_2018_1786_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1295 KB)


  1. Aflalo T, Kellis S, Klaes C, Lee B, Shi Y, Pejsa K, Shanfield K, Hayes-Jackson S, Aisen M, Heck C, Liu C, Andersen RA (2015) Neurophysiology. Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science 348(6237):906–910. CrossRefGoogle Scholar
  2. Akay MF (2009) Support vector machines combined with feature selection for breast cancer diagnosis. Expert Syst Appl 36(2):3240–3247. CrossRefGoogle Scholar
  3. Arbabshirani MR, Havlicek M, Kiehl KA, Pearlson GD, Calhoun VD (2013) Functional network connectivity during rest and task conditions: a comparative study. Hum Brain Mapp 34(11):2959–2971. CrossRefGoogle Scholar
  4. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S, Dogonowski AM, Ernst M, Fair D, Hampson M, Hoptman MJ, Hyde JS, Kiviniemi VJ, Kotter R, Li SJ, Lin CP, Lowe MJ, Mackay C, Madden DJ, Madsen KH, Margulies DS, Mayberg HS, McMahon K, Monk CS, Mostofsky SH, Nagel BJ, Pekar JJ, Peltier SJ, Petersen SE, Riedl V, Rombouts SA, Rypma B, Schlaggar BL, Schmidt S, Seidler RD, Siegle GJ, Sorg C, Teng GJ, Veijola J, Villringer A, Walter M, Wang L, Weng XC, Whitfield-Gabrieli S, Williamson P, Windischberger C, Zang YF, Zhang HY, Castellanos FX, Milham MP (2010) Toward discovery science of human brain function. Proc Natl Acad Sci U S A 107(10):4734–4739. CrossRefGoogle Scholar
  5. Blankertz B, Sannelli C, Halder S, Hammer EM, Kubler A, Muller KR, Curio G, Dickhaus T (2010) Neurophysiological predictor of SMR-based BCI performance. NeuroImage 51(4):1303–1309. CrossRefGoogle Scholar
  6. Bressler SL, Menon V (2010) Large-scale brain networks in cognition: emerging methods and principles. Trends Cognit Sci 14(6):277–290. CrossRefGoogle Scholar
  7. Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Hum Brain Mapp 13(1):43–53CrossRefGoogle Scholar
  8. Calhoun VD, Kiehl KA, Pearlson GD (2008) Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Hum Brain Mapp 29(7):828–838. CrossRefGoogle Scholar
  9. Calhoun VD, Liu J, Adali T (2009) A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. NeuroImage 45(1 Suppl):S163–S172. CrossRefGoogle Scholar
  10. Cardoso J-F Multidimensional independent component analysis. In: ICASSP (1998) Citeseer, pp 1941–1944Google Scholar
  11. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. Acm T Intel Syst Technol 2 (3):27. Google Scholar
  12. Chaudhary U, Birbaumer N, Ramos-Murguialday A (2016) Brain–computer interfaces for communication and rehabilitation. Nat Rev Neurol 12(9):513–525. CrossRefGoogle Scholar
  13. Cohen JR, D’Esposito M (2016) The segregation and integration of distinct brain networks and their relationship to cognition. J Neurosci 36(48):12083–12094. CrossRefGoogle Scholar
  14. Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver TS (2013) Multi-task connectivity reveals flexible hubs for adaptive task control. Nat Neurosci 16(9):1348–1355. CrossRefGoogle Scholar
  15. Cole MW, Bassett DS, Power JD, Braver TS, Petersen SE (2014) Intrinsic and task-evoked network architectures of the human brain. Neuron 83(1):238–251. CrossRefGoogle Scholar
  16. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3(3):201–215. CrossRefGoogle Scholar
  17. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting state networks across healthy subjects. Proc Natl Acad Sci U S A 103(37):13848–13853. CrossRefGoogle Scholar
  18. Decety J (1996) The neurophysiological basis of motor imagery. Behav Brain Res 77(1–2):45–52CrossRefGoogle Scholar
  19. Deco G, Tononi G, Boly M, Kringelbach ML (2015) Rethinking segregation and integration: contributions of whole-brain modelling. Nat Rev Neurosci 16(7):430–439. CrossRefGoogle Scholar
  20. Dosenbach NUF, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coalson RS, Pruett JR, Barch DM, Petersen SE, Schlaggar BL (2010) Prediction of individual brain maturity using fMRI. Science 329(5997):1358–1361. CrossRefGoogle Scholar
  21. Du W, Ma S, Fu GS, Calhoun VD, Adali T (2014) A Novel Approach for Assessing Reliability of Ica for Fmri Analysis. 2014 IEEE international conference on acoustics, speech and signal processing (Icassp)Google Scholar
  22. Du W, Levin-Schwartz Y, Fu GS, Ma S, Calhoun VD, Adali T (2016) The role of diversity in complex ICA algorithms for fMRI analysis. J Neurosci Methods 264:129–135. CrossRefGoogle Scholar
  23. Geerligs L, Renken RJ, Saliasi E, Maurits NM, Lorist MM (2015) A brain-wide study of age-related changes in functional connectivity. Cerebral Cortex 25(7):1987–1999. CrossRefGoogle Scholar
  24. Gerardin E, Sirigu A, Lehericy S, Poline JB, Gaymard B, Marsault C, Agid Y, Le Bihan D (2000) Partially overlapping neural networks for real and imagined hand movements. Cerebral cortex 10(11):1093–1104CrossRefGoogle Scholar
  25. Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC (2016) A multi-modal parcellation of human cerebral cortex. Nature 536(7615):171–178. CrossRefGoogle Scholar
  26. Gratton C, Laumann TO, Gordon EM, Adeyemo B, Petersen SE (2016) Evidence for two independent factors that modify brain networks to meet task goals. Cell Rep 17(5):1276–1288. CrossRefGoogle Scholar
  27. Halder S, Agorastos D, Veit R, Hammer EM, Lee S, Varkuti B, Bogdan M, Rosenstiel W, Birbaumer N, Kubler A (2011) Neural mechanisms of brain–computer interface control. NeuroImage 55(4):1779–1790. CrossRefGoogle Scholar
  28. Hamzah N, Norhazman H, Zaini N, Sani M (2016) Classification of EEG signals based on different motor movement using multi-layer Perceptron artificial neural network. J Biol Sci 16(7):265–271CrossRefGoogle Scholar
  29. Hein G, Morishima Y, Leiberg S, Sul S, Fehr E (2016) The brain’s functional network architecture reveals human motives. Science 351(6277):1074–1078. CrossRefGoogle Scholar
  30. Hetu S, Gregoire M, Saimpont A, Coll MP, Eugene F, Michon PE, Jackson PL (2013) The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev 37(5):930–949. CrossRefGoogle Scholar
  31. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099):164–171. CrossRefGoogle Scholar
  32. Hoshi E, Tanji J (2007) Distinctions between dorsal and ventral premotor areas: anatomical connectivity and functional properties. Curr Opin Neurobiol 17(2):234–242. CrossRefGoogle Scholar
  33. Jafri MJ, Pearlson GD, Stevens M, Calhoun VD (2008) A method for functional network connectivity among spatially independent resting state components in schizophrenia. NeuroImage 39(4):1666–1681. CrossRefGoogle Scholar
  34. Krienen FM, Yeo BT, Buckner RL (2014) Reconfigurable task-dependent functional coupling modes cluster around a core functional architecture. Philos Trans R Soc Lond Ser B Biol Sci 369 (1653).
  35. Kumar S, Sharma A (2018) A new parameter tuning approach for enhanced motor imagery EEG signal classification. Med Biol Eng Comput:1–14Google Scholar
  36. Kumar S, Mamun K, Sharma A (2017) CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI. Comput Biol Med 91:231–242. CrossRefGoogle Scholar
  37. Landry SP, Page S, Shiller DM, Lepage JF, Theoret H, Champoux F (2015) Auditory imagery forces motor action. Neuroreport 26(3):101–106. CrossRefGoogle Scholar
  38. Lewis CM, Baldassarre A, Committeri G, Romani GL, Corbetta M (2009) Learning sculpts the spontaneous activity of the resting human brain. Proc Natl Acad Sci U S A 106(41):17558–17563. CrossRefGoogle Scholar
  39. Li XL, Adali T (2010) Independent component analysis by entropy bound minimization. IEEE Trans Signal Process 58(10):5151–5164. CrossRefGoogle Scholar
  40. Li Y, Long J, Yu T, Yu Z, Wang C, Zhang H, Guan C (2010) An EEG-based BCI system for 2-D cursor control by combining Mu/Beta rhythm and P300 potential. IEEE Trans Bio-Med Eng 57(10):2495–2505CrossRefGoogle Scholar
  41. Li Y, Pan J, Long J, Yu T, Wang F, Yu Z, Wu W (2016) Multimodal BCIs: target detection, multidimensional control, and awareness evaluation in patients with disorder of consciousness. Proc IEEE 104 (2):332–352Google Scholar
  42. Liu F, Guo W, Fouche JP, Wang Y, Wang W, Ding J, Zeng L, Qiu C, Gong Q, Zhang W, Chen H (2015) Multivariate classification of social anxiety disorder using whole brain functional connectivity. Brain Struct Funct 220(1):101–115. CrossRefGoogle Scholar
  43. Long J, Li Y, Wang H, Yu T, Pan J, Li F (2012a) A hybrid brain–computer interface to control the direction and speed of a simulated or real wheelchair. IEEE Trans Neur Syst Rehabil 20(5):720–729CrossRefGoogle Scholar
  44. Long J, Li Y, Yu T, Gu Z (2012b) Target selection with hybrid feature for BCI-based 2-D cursor control. IEEE Trans Bio-Med Eng 59(1):132–140CrossRefGoogle Scholar
  45. Madan CR, Singhal A (2012) Motor imagery and higher-level cognition: four hurdles before research can sprint forward. Cognit Process 13(3):211–229. CrossRefGoogle Scholar
  46. Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci U S A 104(32):13170–13175. CrossRefGoogle Scholar
  47. Mantini D, Corbetta M, Perrucci MG, Romani GL, Del Gratta C (2009) Large-scale brain networks account for sustained and transient activity during target detection. NeuroImage 44(1):265–274. CrossRefGoogle Scholar
  48. Marek S, Hwang K, Foran W, Hallquist MN, Luna B (2015) The contribution of network organization and integration to the development of cognitive control. PLoS Biol 13(12):e1002328. CrossRefGoogle Scholar
  49. McFarland DJ, Wolpaw JR (2011) Brain–computer Interfaces for Communication and Control. Commun ACM 54(5):60–66. CrossRefGoogle Scholar
  50. McKeown MJ, Makeig S, Brown GG, Jung T-P, Kindermann SS, Bell AJ, Sejnowski TJ (1998) Analysis of fMRI data by blind separation into independent spatial componentsGoogle Scholar
  51. Menon V (2011) Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cognit Sci 15(10):483–506. CrossRefGoogle Scholar
  52. Miao M, Wang A, Liu F (2017) A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery eeg pattern recognition. Med Biol Eng Comput 55(9):1589–1603CrossRefGoogle Scholar
  53. Miller KJ, Schalk G, Fetz EE, den Nijs M, Ojemann JG, Rao RP (2010) Cortical activity during motor execution, motor imagery, and imagery-based online feedback. Proc Natl Acad Sci U S A 107(9):4430–4435. CrossRefGoogle Scholar
  54. Mohr H, Wolfensteller U, Betzel RF, Misic B, Sporns O, Richiardi J, Ruge H (2016) Integration and segregation of large-scale brain networks during short-term task automatization. Nat Commun 7:13217. CrossRefGoogle Scholar
  55. Moran A, Guillot A, Macintyre T, Collet C (2012) Re-imagining motor imagery: building bridges between cognitive neuroscience and sport psychology. Br J Psychol 103(2):224–247. CrossRefGoogle Scholar
  56. Moxon KA, Foffani G (2015) Brain-Machine Interfaces beyond Neuroprosthetics. Neuron 86(1):55–67. CrossRefGoogle Scholar
  57. Neuper C, Scherer R, Reiner M, Pfurtscheller G (2005) Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Brain Res Cognit Brain Res 25(3):668–677. CrossRefGoogle Scholar
  58. Obermeyer Z, Emanuel EJ (2016) Predicting the future—big data, machine learning, and clinical medicine. N Engl J Med 375(13):1216–1219. doiCrossRefGoogle Scholar
  59. Petersen SE, Posner MI (2012) The attention system of the human brain: 20 years after. Ann Rev Neurosci 35:73–89. CrossRefGoogle Scholar
  60. Petersen SE, Sporns O (2015) Brain networks and cognitive architectures. Neuron 88(1):207–219. CrossRefGoogle Scholar
  61. Pichiorri F, Morone G, Petti M, Toppi J, Pisotta I, Molinari M, Paolucci S, Inghilleri M, Astolfi L, Cincotti F (2015) Brain–computer interface boosts motor imagery practice during stroke recovery. Ann Neurol 77(5):851–865CrossRefGoogle Scholar
  62. Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA, Vogel AC, Laumann TO, Miezin FM, Schlaggar BL, Petersen SE (2011) Functional network organization of the human brain. Neuron 72(4):665–678. CrossRefGoogle Scholar
  63. Ptak R, Schnider A (2010) The dorsal attention network mediates orienting toward behaviorally relevant stimuli in spatial neglect. J Neurosci 30(38):12557–12565. CrossRefGoogle Scholar
  64. Rosenberg MD, Finn ES, Scheinost D, Papademetris X, Shen X, Constable RT, Chun MM (2016) A neuromarker of sustained attention from whole-brain functional connectivity. Nat Neurosci 19(1):165–171. CrossRefGoogle Scholar
  65. Sakurada T, Hirai M, Watanabe E (2016) Optimization of a motor learning attention-directing strategy based on an individual’s motor imagery ability. Exp Brain Res Exp Hirnforschung Exp Cerebrale 234(1):301–311. CrossRefGoogle Scholar
  66. Schultz DH, Cole MW (2016) Higher intelligence is associated with less task-related brain network reconfiguration. J Neurosci 36(33):8551–8561. CrossRefGoogle Scholar
  67. Sharma A, Paliwal KK (2006) Subspace independent component analysis using vector kurtosis. Pattern Recogn 39(11):2227–2232. CrossRefGoogle Scholar
  68. Shine JM, Bissett PG, Bell PT, Koyejo O, Balsters JH, Gorgolewski KJ, Moodie CA, Poldrack RA (2016) The dynamics of functional brain networks: integrated network states during cognitive task performance. Neuron 92(2):544–554. CrossRefGoogle Scholar
  69. Smith S (2015) Linking cognition to brain connectivity. Nat Neurosci 19(1):7–9. CrossRefGoogle Scholar
  70. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci 106 (31):13040–13045. CrossRefGoogle Scholar
  71. Solodkin A, Hlustik P, Chen EE, Small SL (2004) Fine modulation in network activation during motor execution and motor imagery. Cerebral cortex 14(11):1246–1255. CrossRefGoogle Scholar
  72. Sporns O (2014) Contributions and challenges for network models in cognitive neuroscience. Nat Neurosci 17(5):652–660. CrossRefGoogle Scholar
  73. Tavor I, Parker Jones O, Mars RB, Smith SM, Behrens TE, Jbabdi S (2016) Task-free MRI predicts individual differences in brain activity during task performance. Science 352(6282):216–220. CrossRefGoogle Scholar
  74. Tsvetanov KA, Henson RN, Tyler LK, Razi A, Geerligs L, Ham TE, Rowe JB, Cambridge Centre for A, Neuroscience (2016) Extrinsic and intrinsic brain network connectivity maintains cognition across the lifespan despite accelerated decay of regional brain activation. J Neurosci 36(11):3115–3126. CrossRefGoogle Scholar
  75. Wang LB, Liu Q, Shen H, Li H, Hu DW (2015) Large-scale functional brain network changes in taxi drivers: evidence from resting state fMRI. Hum Brain Mapp 36(3):862–871. CrossRefGoogle Scholar
  76. Woo CW, Chang LJ, Lindquist MA, Wager TD (2017) Building better biomarkers: brain models in translational neuroimaging. Nat Neurosci 20(3):365–377. CrossRefGoogle Scholar
  77. Zabelina DL, Andrews-Hanna JR (2016) Dynamic network interactions supporting internally-oriented cognition. Curr Opin Neurobiol 40:86–93. CrossRefGoogle Scholar
  78. Zhang T, Liu T, Li F, Li M, Liu D, Zhang R, He H, Li P, Gong J, Luo C, Yao D, Xu P (2016) Structural and functional correlates of motor imagery BCI performance: insights from the patterns of fronto-parietal attention network. NeuroImage 134:475–485. CrossRefGoogle Scholar
  79. Zhang Y, Wang Y, Jin J, Wang X (2017) Sparse Bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification. Int J Neural Syst 27(02):1650032CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science InstituteUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Xihua UniversityChengduChina
  3. 3.Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
  4. 4.School of Computer Science and TechnologySouthwest University of Science and TechnologyMianyangChina
  5. 5.Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations