Brain Structure and Function

, Volume 224, Issue 1, pp 471–483 | Cite as

Cortistatin-expressing interneurons require TrkB signaling to suppress neural hyper-excitability

  • Julia L. Hill
  • Dennisse V. Jimenez
  • Yishan Mai
  • Ming Ren
  • Henry L. Hallock
  • Kristen R. Maynard
  • Huei-Ying Chen
  • Nicholas F. Hardy
  • Robert J. Schloesser
  • Brady J. Maher
  • Feng Yang
  • Keri MartinowichEmail author
Original Article


Signaling of brain-derived neurotrophic factor (BDNF) via tropomyosin receptor kinase B (TrkB) plays a critical role in the maturation of cortical inhibition and controls expression of inhibitory interneuron markers, including the neuropeptide cortistatin (CST). CST is expressed exclusively in a subset of cortical and hippocampal GABAergic interneurons, where it has anticonvulsant effects and controls sleep slow-wave activity (SWA). We hypothesized that CST-expressing interneurons play a critical role in regulating excitatory/inhibitory balance, and that BDNF, signaling through TrkB receptors on CST-expressing interneurons, is required for this function. Ablation of CST-expressing cells caused generalized seizures and premature death during early postnatal development, demonstrating a critical role for these cells in providing inhibition. Mice in which TrkB was selectively deleted from CST-expressing interneurons were hyperactive, slept less and developed spontaneous seizures. Frequencies of spontaneous excitatory post-synaptic currents (sEPSCs) on CST-expressing interneurons were attenuated in these mice. These data suggest that BDNF, signaling through TrkB receptors on CST-expressing cells, promotes excitatory drive onto these cells. Loss of excitatory drive onto CST-expressing cells that lack TrkB receptors may contribute to observed hyperexcitability and epileptogenesis.


BDNF TrkB Interneuron Seizure Sleep Cortistatin 



We thank Dr. Daniel Weinberger and members of the Martinowich laboratory for critical reading of the manuscript.


This work was supported by the National Institutes of Health (MH105592 to KM); the Epilepsy Foundation (Research Grant to KM); and the Lieber Institute for Brain Development.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

429_2018_1783_MOESM1_ESM.pdf (1.6 mb)
Supplementary material 1 (PDF 1623 KB)

Supplementary material 2 (MP4 44307 KB)

Supplementary material 3 (MP4 44413 KB)

Supplementary material 4 (MP4 44403 KB)


  1. Aourz N, Portelli J, Coppens J, De Bundel D, Di Giovanni G, Van Eeckhaut A, Michotte Y, Smolders I (2014) Cortistatin-14 mediates its anticonvulsant effects via sst2 and sst3 but not ghrelin receptors. CNS Neurosci Ther 20(7):662–670Google Scholar
  2. Baquet ZC, Gorski JA, Jones KR (2004) Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J Neurosci 24(17):4250–4258Google Scholar
  3. Binder DK, Routbort MJ, Ryan TE, Yancopoulos GD, McNamara JO (1999) Selective inhibition of kindling development by intraventricular administration of TrkB receptor body. J Neurosci 19(4):1424–1436Google Scholar
  4. Bourgin P, Fabre V, Huitron-Resendiz S, Henriksen SJ, Prospero-Garcia O, Criado JR, de Lecea L (2007) Cortistatin promotes and negatively correlates with slow-wave sleep. Eur J Neurosci 26(3):729–738Google Scholar
  5. Braun H, Schulz S, Becker A, Schroder H, Hollt V (1998) Protective effects of cortistatin (CST-14) against kainate-induced neurotoxicity in rat brain. Brain Res 803(1–2):54–60Google Scholar
  6. Cellerino A, Maffei L, Domenici L (1996) The distribution of brain-derived neurotrophic factor and its receptor trkB in parvalbumin-containing neurons of the rat visual cortex. Eur J Neurosci 8(6):1190–1197Google Scholar
  7. Chang J, Gilman SR, Chiang AH, Sanders SJ, Vitkup D (2015) Genotype to phenotype relationships in autism spectrum disorders. Nat Neurosci 18(2):191–198Google Scholar
  8. de Lecea L (2008) Cortistatin–functions in the central nervous system. Mol Cell Endocrinol 286(1–2):88–95Google Scholar
  9. de Lecea L, Criado JR, Prospero-Garcia O, Gautvik KM, Schweitzer P, Danielson PE, Dunlop CL, Siggins GR, Henriksen SJ, Sutcliffe JG (1996) A cortical neuropeptide with neuronal depressant and sleep-modulating properties. Nature 381(6579):242–245Google Scholar
  10. de Lecea L, del Rio JA, Criado JR, Alcantara S, Morales M, Danielson PE, Henriksen SJ, Soriano E, Sutcliffe JG (1997) Cortistatin is expressed in a distinct subset of cortical interneurons. J Neurosci 17(15):5868–5880Google Scholar
  11. Ding Y, Chang LC, Wang X, Guilloux JP, Parrish J, Oh H, French BJ, Lewis DA, Tseng GC, Sibille E (2015) Molecular and genetic characterization of depression: overlap with other psychiatric disorders and aging. Mol Neuropsychiatry 1(1):1–12Google Scholar
  12. Ernfors P, Bengzon J, Kokaia Z, Persson H, Lindvall O (1991) Increased levels of messenger RNAs for neurotrophic factors in the brain during kindling epileptogenesis. Neuron 7(1):165–176Google Scholar
  13. Estellar R, Echauz J, Tcheng T, Litt B, Pless B (2001) Line length: an efficient feature for seizure onset detection. Proceedings of the 23rd Annual International Conference of the IEEEGoogle Scholar
  14. Faraguna U, Vyazovskiy VV, Nelson AB, Tononi G, Cirelli C (2008) A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep. J Neurosci Official J Soc Neurosci 28:4088–4095Google Scholar
  15. Fuchs T, Jefferson SJ, Hooper A, Yee PH, Maguire J, Luscher B (2017) Disinhibition of somatostatin-positive GABAergic interneurons results in an anxiolytic and antidepressant-like brain state. Mol Psychiatry 22(6):920–930Google Scholar
  16. Gorba T, Wahle P (1999) Expression of TrkB and TrkC but not BDNF mRNA in neurochemically identified interneurons in rat visual cortex in vivo and in organotypic cultures. Eur J Neurosci 11(4):1179–1190Google Scholar
  17. Grishanin RN, Yang H, Liu X, Donohue-Rolfe K, Nune GC, Zang K, Xu B, Duncan JL, Lavail MM, Copenhagen DR, Reichardt LF (2008) Retinal TrkB receptors regulate neural development in the inner, but not outer, retina. Mol Cell Neurosci 38(3):431–443Google Scholar
  18. Guilloux JP, Douillard-Guilloux G, Kota R, Wang X, Gardier AM, Martinowich K, Tseng GC, Lewis DA, Sibille E (2012) Molecular evidence for BDNF- and GABA-related dysfunctions in the amygdala of female subjects with major depression. Mol Psychiatry 17(11):1130–1142Google Scholar
  19. Hairston IS, Waxler E, Seng JS, Fezzey AG, Rosenblum KL, Muzik M (2011) The role of infant sleep in intergenerational transmission of trauma. Sleep 34(10):1373–1383Google Scholar
  20. Heimel JA, van Versendaal D, Levelt CN (2011) The role of GABAergic inhibition in ocular dominance plasticity. Neural Plast 2011:391763Google Scholar
  21. Hill JL, Hardy NF, Jimenez DV, Maynard KR, Kardian AS, Pollock CJ, Schloesser RJ, Martinowich K (2016) Loss of promoter IV-driven BDNF expression impacts oscillatory activity during sleep, sensory information processing and fear regulation. Transl Psychiatry 6(8):e873Google Scholar
  22. Huang ZJ, Zeng H (2013) Genetic approaches to neural circuits in the mouse. Annu Rev Neurosci 36:183–215Google Scholar
  23. Huang ZJ, Kirkwood A, Pizzorusso T, Porciatti V, Morales B, Bear MF, Maffei L, Tonegawa S (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98(6):739–755Google Scholar
  24. Huber R, Deboer T, Tobler I (2000) Effects of sleep deprivation on sleep and sleep EEG in three mouse strains: empirical data and simulations. Brain Res 857(1–2):8–19Google Scholar
  25. Huber R, Tononi G, Cirelli C (2007) Exploratory behavior, cortical BDNF expression, and sleep homeostasis. Sleep 30(2):129–139Google Scholar
  26. Itami C, Kimura F, Nakamura S (2007) Brain-derived neurotrophic factor regulates the maturation of layer 4 fast-spiking cells after the second postnatal week in the developing barrel cortex. J Neurosci 27(9):2241–2252Google Scholar
  27. Jacob J (2016) Cortical interneuron dysfunction in epilepsy associated with autism spectrum disorders. Epilepsia 57(2):182–193Google Scholar
  28. Klaassen A, Glykys J, Maguire J, Labarca C, Mody I, Boulter J (2006) Seizures and enhanced cortical GABAergic inhibition in two mouse models of human autosomal dominant nocturnal frontal lobe epilepsy. Proc Natl Acad Sci USA 103(50):19152–19157Google Scholar
  29. Koyama R, Ikegaya Y (2005) To BDNF or not to BDNF: that is the epileptic hippocampus. Neuroscientist 11(4):282–287Google Scholar
  30. Lin LC, Sibille E (2015) Somatostatin, neuronal vulnerability and behavioral emotionality. Mol Psychiatry 20(3):377–387Google Scholar
  31. Liu G, Kotloski RJ, McNamara JO (2014) Antiseizure effects of TrkB kinase inhibition. Epilepsia 55(8):1264–1273Google Scholar
  32. Lucas EK, Jegarl A, Clem RL (2014) Mice lacking TrkB in parvalbumin-positive cells exhibit sexually dimorphicbehavioral phenotypes. Behav Brain Res 274:219–225. Google Scholar
  33. Luttjohann A, Fabene PF, van Luijtelaar G (2009) A revised Racine’s scale for PTZ-induced seizures in rats. Physiol Behav 98(5):579–586Google Scholar
  34. Martinowich K, Schloesser RJ, Jimenez DV, Weinberger DR, Lu B (2011) Activity-dependent brain-derived neurotrophic factor expression regulates cortistatin-interneurons and sleep behavior. Mol Brain 4:11Google Scholar
  35. Martinowich K, Cardinale KM, Schloesser RJ, Hsu M, Greig NH, Manji HK (2012) Acetylcholinesterase inhibition ameliorates deficits in motivational drive. Behav Brain Funct 8:15Google Scholar
  36. Marty S, Berzaghi Mda P, Berninger B (1997) “Neurotrophins and activity-dependent plasticity of cortical interneurons”. Trends Neurosci 20(5):198–202Google Scholar
  37. Maynard KR, Hill JL, Calcaterra NE, Palko ME, Kardian A, Paredes D, Sukumar M, Adler BD, Jimenez DV, Schloesser RJ, Tessarollo L, Lu B, Martinowich K (2016) Functional role of BDNF production from unique promoters in aggression and serotonin signaling. Neuropsychopharmacology 41(8):1943–1955Google Scholar
  38. McNamara JO, Scharfman HE (2012). Temporal Lobe Epilepsy and the BDNF Receptor, TrkB. Jasper’s Basic Mechanisms of the Epilepsies. Noebels JL, Avoli M, Rogawski MA, Olsen RW and A. V. Delgado-Escueta. Bethesda (MD)Google Scholar
  39. Merlio JP, Ernfors P, Kokaia Z, Middlemas DS, Bengzon J, Kokaia M, Smith ML, Siesjo BK, Hunter T, Lindvall O et al (1993) Increased production of the TrkB protein tyrosine kinase receptor after brain insults. Neuron 10(2):151–164Google Scholar
  40. Moore EM, Boehm SL (2009) Site-specific microinjection of baclofen into the anterior ventral tegmental area reduces binge-like ethanol intake in male C57BL/6J mice. Behav Neurosci 123(3):555–563Google Scholar
  41. Nagappan G, Lu B (2005) Activity-dependent modulation of the BDNF receptor TrkB: mechanisms and implications. Trends Neurosci 28(9):464–471Google Scholar
  42. Nava C, Dalle C, Rastetter A, Striano P, de Kovel CG, Nabbout R, Cances C, Ville D, Brilstra EH, Gobbi G, Raffo E, Bouteiller D, Marie Y, Trouillard O, Robbiano A, Keren B, Agher D, Roze E, Lesage S, Nicolas A, Brice A, Baulac M, Vogt C, El Hajj N, Schneider E, Suls A, Weckhuysen S, Gormley P, Lehesjoki AE, De Jonghe P, Helbig I, Baulac S, Zara F, Koeleman BP, Euro ERESC, Haaf T, LeGuern E, Depienne C (2014) De novo mutations in HCN1 cause early infantile epileptic encephalopathy. Nat Genet 46(6):640–645Google Scholar
  43. Paradiso B, Zucchini S, Su T, Bovolenta R, Berto E, Marconi P, Marzola A, Navarro Mora G, Fabene PF, Simonato M (2011) Localized overexpression of FGF-2 and BDNF in hippocampus reduces mossy fiber sprouting and spontaneous seizures up to 4 weeks after pilocarpine-induced status epilepticus. Epilepsia 52(3):572–578Google Scholar
  44. Patterson PH (2011) Modeling autistic features in animals. Pediatr Res 69(5 Pt 2):34R–40RGoogle Scholar
  45. Poolos NP (2012) Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channelopathy in epilepsy. Jasper’s basic mechanisms of the epilepsies. th, Noebels JL, Avoli M et al. Bethesda (MD)Google Scholar
  46. Price MG, Yoo JW, Burgess DL, Deng F, Hrachovy RA, Frost JD, Noebels JL (2009) A triplet repeat expansion genetic mouse model of infantile spasms syndrome, Arx(GCG)10 + 7, with interneuronopathy, spasms in infancy, persistent seizures, and adult cognitive and behavioral impairment. J Neurosci 29(27):8752–8763Google Scholar
  47. Prince DA, Gu F, Parada I (2016) Antiepileptogenic repair of excitatory and inhibitory synaptic connectivity after neocortical trauma. Prog Brain Res 226:209–227Google Scholar
  48. Reibel S, Depaulis A, Larmet Y (2001) BDNF and epilepsy–the bad could turn out to be good. Trends Neurosci 24(6):318–319Google Scholar
  49. Rossignol E, Kruglikov I, van den Maagdenberg AM, Rudy B, Fishell G (2013) CaV 2.1 ablation in cortical interneurons selectively impairs fast-spiking basket cells and causes generalized seizures. Ann Neurol 74(2):209–222Google Scholar
  50. Schweitzer P, Madamba SG, Siggins GR (2003) The sleep-modulating peptide cortistatin augments the h-current in hippocampal neurons. J Neurosci 23(34):10884–10891Google Scholar
  51. Simonato M (2014) Gene therapy for epilepsy. Epilepsy Behav 38:125–130Google Scholar
  52. Souza-Moreira L, Morell M, Delgado-Maroto V, Pedreno M, Martinez-Escudero L, Caro M, O’Valle F, Luque R, Gallo M, de Lecea L, Castano JP, Gonzalez-Rey E (2013) Paradoxical effect of cortistatin treatment and its deficiency on experimental autoimmune encephalomyelitis. J Immunol 191(5):2144–2154Google Scholar
  53. Swanwick CC, Harrison MB, Kapur J (2004) Synaptic and extrasynaptic localization of brain-derived neurotrophic factor and the tyrosine kinase B receptor in cultured hippocampal neurons. J Comp Neurol 478(4):405–417Google Scholar
  54. Taniguchi H, He M, Wu P, Kim S, Paik R, Sugino K, Kvitsiani D, Fu Y, Lu J, Lin Y, Miyoshi G, Shima Y, Fishell G, Nelson SB, Huang ZJ (2011) A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71(6):995–1013Google Scholar
  55. Thoby-Brisson M, Cauli B, Champagnat J, Fortin G, Katz DM (2003) Expression of functional tyrosine kinase B receptors by rhythmically active respiratory neurons in the pre-Botzinger complex of neonatal mice. J Neurosci 23(20):7685–7689Google Scholar
  56. Timmusk T, Belluardo N, Persson H, Metsis M (1994) Developmental regulation of brain-derived neurotrophic factor messenger RNAs transcribed from different promoters in the rat brain. Neuroscience 60(2):287–291Google Scholar
  57. Tononi G, Cirelli C (2014) Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81(1):12–34Google Scholar
  58. Weidner KL, Buenaventura DF, Chadman KK (2014) Mice over-expressing BDNF in forebrain neurons develop an altered behavioral phenotype with age. Behav Brain Res 268:222–228Google Scholar
  59. Woo NH, Lu B (2006) Regulation of cortical interneurons by neurotrophins: from development to cognitive disorders. Neuroscientist 12(1):43–56Google Scholar
  60. Xu X, Wells AB, O’Brien DR, Nehorai A, Dougherty JD (2014) Cell type-specific expression analysis to identify putative cellular mechanisms for neurogenetic disorders. J Neurosci 34(4):1420–1431Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Julia L. Hill
    • 1
  • Dennisse V. Jimenez
    • 1
  • Yishan Mai
    • 1
  • Ming Ren
    • 1
  • Henry L. Hallock
    • 1
  • Kristen R. Maynard
    • 1
  • Huei-Ying Chen
    • 1
  • Nicholas F. Hardy
    • 1
  • Robert J. Schloesser
    • 2
  • Brady J. Maher
    • 1
    • 3
  • Feng Yang
    • 1
  • Keri Martinowich
    • 1
    • 3
    Email author
  1. 1.Lieber Institute for Brain DevelopmentJohns Hopkins Medical CampusBaltimoreUSA
  2. 2.Sheppard Pratt-Lieber Research Institute, IncBaltimoreUSA
  3. 3.Departments of Psychiatry and Behavioral Sciences, and NeuroscienceJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations