Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Sex differences in the neural correlates of aggression

Abstract

Although sex differences in aggression have been investigated for decades, little is known about the underlying neurobiology of this phenomenon. To address this gap, the present study implemented a social reactive aggression paradigm in 20 women and 22 men, employing a modified Taylor Aggression Task (mTAT) to provoke aggressive behavior in an fMRI setting. Subjects were provoked by money subtraction from a fake opponent and given the opportunity to retaliate likewise. In the absence of behavioral differences, male and female subjects showed differential brain activation patterns in response to provocation. Men had higher left amygdala activation during high provocation. This amygdala activation correlated with trait anger scores in men, but not in women. Also, men showed a positive association between orbitofrontal cortex, rectal gyrus and anterior cingulate cortex (ACC) activity in the provocation contrast and their tendency to respond aggressively, whereas women displayed a negative association. As the rectal gyrus and OFC have been attributed a crucial role in automatic emotion regulation, this finding points toward the assumption that highly aggressive men use automatic emotion regulation to a greater extent in response to provocation compared to highly aggressive women.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Anderson CA, Bushman BJ (2001) Human aggression. Annu Rev Psychol 53:27–51. https://doi.org/10.1146/annurev.psych.53.100901.135231

  2. Archer J (2004) Sex differences in aggression in real-world settings: a meta-analytic review. Rev Gen Psychol 8:291–322. https://doi.org/10.1037/1089-2680.8.4.291

  3. Archer J (2009) Does sexual selection explain human sex differences in aggression? Behav Brain Sci 32:249–266. https://doi.org/10.1017/S0140525X09990951

  4. Asahi S, Okamoto Y, Okada G et al (2004) Negative correlation between right prefrontal activity during response inhibition and impulsiveness: a fMRI study. Eur Arch Psychiatry Clin Neurosci 254:245–251. https://doi.org/10.1007/s00406-004-0488-z

  5. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839–851. https://doi.org/10.1016/j.neuroimage.2005.02.018

  6. Bao A-M, Swaab DF (2011) Sexual differentiation of the human brain: relation to gender identity, sexual orientation and neuropsychiatric disorders. Front Neuroendocrinol 32:214–226. https://doi.org/10.1016/j.yfrne.2011.02.007

  7. Bettencourt BA, Miller N (1996) Gender differences in aggression as a function of provocation: a meta-analysis. Psychol Bull 119:422–447. https://doi.org/10.1037/0033-2909.119.3.422

  8. Beyer F, Münte TF, Erdmann C, Krämer UM (2013) Emotional reactivity to threat modulates activity in mentalizing network during aggression. Soc Cogn Affect Neurosci I. https://doi.org/10.1093/scan/nst146

  9. Beyer F, Muente TF, Goettlich M, Kraemer UM (2015) Orbitofrontal cortex reactivity to angry facial expression in a social interaction correlates with aggressive behavior. Cereb Cortex 25:3057–3063. https://doi.org/10.1093/cercor/bhu101

  10. Blair RJR (2012) Considering anger from a cognitive neuroscience perspective. Wiley Interdiscip Rev Cogn Sci 3:65–74. https://doi.org/10.1002/wcs.154

  11. Blair RJR (2016) The neurobiology of impulsive aggression. J Child Adolesc Psychopharmacol 26:4–9. https://doi.org/10.1089/cap.2015.0088

  12. Bobes M, Ostrosky F, Diaz K et al (2013) Linkage of functional and structural anomalies in the left amygdala of reactive-aggressive men. Soc Cogn Affect Neurosci 8:928–936. https://doi.org/10.1093/scan/nss101

  13. Broidy L, Agnew R (1997) Gender and crime: a general strain theory perspective. J Res Crime Delinq 34:275–306. https://doi.org/10.1177/0022427897034003001

  14. Buhle JT, Silvers JA, Wage TD et al (2014) Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies. Cereb Cortex 24:2981–2990. https://doi.org/10.1093/cercor/bht154

  15. Buss AH, Perry M (1992) Personality processes and individual the aggression questionnaire. J Pers 63:452–459. https://doi.org/10.1037/0022-3514.63.3.452

  16. Cahill L (2006) Why sex matters for neuroscience. Nat Rev Neurosci 7:477–484. https://doi.org/10.1038/nrn1909

  17. Campbell A (2006) Sex differences in direct aggression: what are the psychological mediators? Aggress Violent Behav 11:237–264. https://doi.org/10.1016/j.avb.2005.09.002

  18. Carré JM, Olmstead NA (2015) Social neuroendocrinology of human aggression: examining the role of competition-induced testosterone dynamics. Neuroscience 286:171–186

  19. Chester DS, Eisenberger NI, Pond RS et al (2014) The interactive effect of social pain and executive functioning on aggression: an fMRI experiment. Soc Cogn Affect Neurosci 9:699–704. https://doi.org/10.1093/scan/nst038

  20. Coccaro EF, Sripada CS, Yanowitch RN, Phan KL (2011) Corticolimbic function in impulsive aggressive behavior. Biol Psychiatry 69:1153–1159. https://doi.org/10.1016/j.biopsych.2011.02.032

  21. Daigle LE, Cullen FT, Wright JP (2007) Gender differences in the predictors of juvenile delinquency. Youth Violence Juv Justice 5:254–286. https://doi.org/10.1177/1541204007301289

  22. Damasio H, Grabowski T, Frank R et al (1994) The return of Phineas Gage: clues about the brain from the skull of a famous patient. Science 264:1102–1105. https://doi.org/10.1126/science.8178168

  23. Dambacher F, Schuhmann T, Lobbestael J et al (2015) No effects of bilateral tDCS over inferior frontal gyrus on response inhibition and aggression. PLoS One. https://doi.org/10.1371/journal.pone.0132170

  24. DeKeseredy WS (2011) Feminist contributions to understanding woman abuse: myths, controversies, and realities. Aggress Violent Behav 16:297–302. https://doi.org/10.1016/j.avb.2011.04.002

  25. Derntl B, Windischberger C, Robinson S et al (2009) Amygdala activity to fear and anger in healthy young males is associated with testosterone. Psychoneuroendocrinology 34:687–693. https://doi.org/10.1016/j.psyneuen.2008.11.007

  26. Domes G, Schulze L, Böttger M et al (2010) The neural correlates of sex differences in emotional reactivity and emotion regulation. Hum Brain Map 31:758–769. https://doi.org/10.1002/hbm.20903

  27. Eickhoff SB, Stephan KE, Mohlberg H et al (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25:1325–1335. https://doi.org/10.1016/j.neuroimage.2004.12.034

  28. Etkin A, Egner T, Kalisch R (2011) Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci 15:85–93. https://doi.org/10.1016/j.tics.2010.11.004

  29. Etkin A, Büchel C, Gross JJ (2015) The neural bases of emotion regulation. Nat Rev Neurosci 16:693–700. https://doi.org/10.1038/nrn4044

  30. Fine JG, Semrud-Clikeman M, Zhu DC (2009) Gender differences in BOLD activation to face photographs and video vignettes. Behav Brain Res 201:137–146. https://doi.org/10.1016/j.bbr.2009.02.009

  31. Gan G, Sterzer P, Marxen M et al (2015) Neural and behavioral correlates of alcohol-induced aggression under provocation. Neuropsychopharmacology. https://doi.org/10.1038/npp.2015.141

  32. Giancola PR, Parrott DJ (2008) Further evidence for the validity of the Taylor aggression paradigm. Aggress Behav 34:214–229. https://doi.org/10.1002/ab.20235

  33. Goetz SMM, Tang L, Thomason ME et al (2014) Testosterone rapidly increases neural reactivity to threat in healthy men: a novel two-step pharmacological challenge paradigm. Biol Psychiatry 76:324–331. https://doi.org/10.1016/j.biopsych.2014.01.016

  34. Gopal A, Clark E, Allgair A et al (2013) Dorsal/ventral parcellation of the amygdala: Relevance to impulsivity and aggression. Psychiatry Res Neuroimag 211:24–30. https://doi.org/10.1016/j.pscychresns.2012.10.010

  35. Gustafsson A, Lindenfors P (2004) Human size evolution: No evolutionary allometric relationship between male and female stature. J Hum Evol 47:253–266. https://doi.org/10.1016/j.jhevol.2004.07.004

  36. Hay DF (2007) The gradual emergence of sex differences in aggression: alternative hypotheses. Psychol Med 37:1527–1537. https://doi.org/10.1017/S0033291707000165

  37. Herpertz SC, Nagy K, Ueltzhöffer K et al (2017) Brain mechanisms underlying reactive aggression in borderline personality disorder—sex matters. Biol Psychiatry 82:257–266. https://doi.org/10.1016/j.biopsych.2017.02.1175

  38. Kohn N, Kellermann T, Gur RC et al (2011) Gender differences in the neural correlates of humor processing: Implications for different processing modes. Neuropsychologia 49:888–897. https://doi.org/10.1016/j.neuropsychologia.2011.02.010

  39. Kohn N, Eickhoff SB, Scheller M et al (2014) Neural network of cognitive emotion regulation—an ALE meta-analysis and MACM analysis. Neuroimage 87:345–355. https://doi.org/10.1016/j.neuroimage.2013.11.001

  40. Kopsida E, Berrebi J, Petrovic P, Ingvar M (2016) Testosterone administration related differences in brain activation during the Ultimatum Game. Front Neurosci 10:. https://doi.org/10.3389/fnins.2016.00066

  41. Krämer UM, Riba J, Richter S et al (2011) An fMRI study on the role of serotonin in reactive aggression. PLoS One 6:e27668. https://doi.org/10.1371/journal.pone.0027668

  42. Kret MEE, De Gelder B (2012) A review on sex differences in processing emotional signals. Neuropsychologia 50:1211–1221. https://doi.org/10.1016/j.neuropsychologia.2011.12.022

  43. Lancaster JL, Woldorff MG, Parsons LM et al (2000) Automated Talairach atlas labels for functional brain mapping. Hum Brain Map 10:120–131

  44. Liu J, Zubieta J-K, Heitzeg M (2012) Sex differences in anterior cingulate cortex activation during impulse inhibition and behavioral correlates. Psychiatry Res 201:54–62. https://doi.org/10.1016/j.pscychresns.2011.05.008

  45. Lotze M, Veit R, Anders S, Birbaumer N (2007) Evidence for a different role of the ventral and dorsal medial prefrontal cortex for social reactive aggression: an interactive fMRI study. Neuroimage 34:470–478. https://doi.org/10.1016/j.neuroimage.2006.09.028

  46. Mattavelli G, Sormaz M, Flack T et al (2014) Neural responses to facial expressions support the role of the amygdala in processing threat. Soc Cogn Affect Neurosci 9:1684–1689. https://doi.org/10.1093/scan/nst162

  47. Mauss IB, Evers C, Wilhelm FH, Gross JJ (2006) How to bite your tongue without blowing your top: Implicit evaluation of emotion regulation predicts affective responding to anger provocation. Pers Soc Psychol Bull 32:589–602. https://doi.org/10.1177/0146167205283841

  48. McRae K, Ochsner KN, Mauss IB et al (2008) Gender differences in emotion regulation: an fMRI study of cognitive reappraisal. Gr Process Intergr Relat 11:143–162. https://doi.org/10.1177/1368430207088035

  49. Wittchen H, Zaudig M, Fydrich T (1997) Strukturiertes Klinisches Interview für DSM-IV, Hogrefe

  50. Rahko J, Paakki JJ, Starck T et al (2010) Functional mapping of dynamic happy and fearful facial expression processing in adolescents. Brain Imaging Behav 4:164–176. https://doi.org/10.1007/s11682-010-9096-x

  51. Repple J, Pawliczek CM, Voss B et al (2017) From provocation to aggression: the neural network. BMC Neurosci 18:73. https://doi.org/10.1186/s12868-017-0390-z

  52. Richardson DS, Hammock GS (2007) Social context of human aggression: are we paying too much attention to gender? Aggress Violent Behav 12:417–426. https://doi.org/10.1016/j.avb.2006.11.001

  53. Scarduzio JA, Carlyle KE, Harris KL, Savage MW (2017) Maybe she was provoked. Violence Against Women 23:89–113. https://doi.org/10.1177/1077801216636240

  54. Schienle A, Schäfer A, Stark R et al (2005) Gender differences in the processing of disgust- and fear-inducing pictures: an fMRI study. Neuroreport 16:277–280. https://doi.org/10.1097/00001756-200502280-00015

  55. Schneider F, Habel U, Kessler C et al (2000) Gender differences in regional cerebral activity during sadness. Hum Brain Map 9:226–238. https://doi.org/10.1002/(SICI)1097-0193(200004)9:4%3C226::AID-HBM4%3E3.0.CO;2-K

  56. Schwenkmezger P, Hodapp V, Spielberger CD (1992) Das State-Trait Aerger-Ausdrucks-Inventar. Huber, Bern

  57. Siever LJ (2008) Reviews and overviews neurobiology of aggression and violence. Am J Psychiatry 165:429–442. https://doi.org/10.1176/appi.ajp.2008.07111774

  58. Strüber D, Lück M, Roth G (2008) Sex, aggression and impulse control: an integrative account. Neurocase Neural Basis Cogn 14:93–121. https://doi.org/10.1080/13554790801992743

  59. Wagels L, Votinov M, Kellermann T et al (2018) Exogenous testosterone enhances the reactivity to social provocation in males. Front Behav Neurosci 12:37. https://doi.org/10.3389/FNBEH.2018.00037

  60. Weaver JR, Vandello JA, Bosson JK, Burnaford RM (2010) The proof is in the punch: gender differences in perceptions of action and aggression as components of manhood. Sex Roles 62:241–251. https://doi.org/10.1007/s11199-009-9713-6

  61. Wrase J, Klein S, Gruesser SM et al (2003) Gender differences in the processing of standardized emotional visual stimuli in humans: a functional magnetic resonance imaging study. Neurosci Lett 348:41–45. https://doi.org/10.1016/S0304-3940(03)00565-2

  62. Yang Y, Raine A (2009) Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: a meta-analysis. Psychiatry Res 174:81–88. https://doi.org/10.1016/j.pscychresns.2009.03.012

Download references

Acknowledgements

The authors thank all subjects for participation. The study was supported by the German Research Foundation (IRTG 1328, DFG), IZKF Aachen (Interdisciplinary Center for Clinical Research within the Faculty of Medicine at the RWTH Aachen University, N4-4) and the Brain Imaging Facility of the Interdisciplinary Centre for Clinical Research within the Faculty of Medicine at the RWTH Aachen University, Germany.

Author information

Correspondence to Jonathan Repple.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Research involving human participants

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Repple, J., Habel, U., Wagels, L. et al. Sex differences in the neural correlates of aggression. Brain Struct Funct 223, 4115–4124 (2018). https://doi.org/10.1007/s00429-018-1739-5

Download citation

Keywords

  • Sex
  • Gender differences
  • Imaging
  • Aggression
  • Impulsivity
  • Inhibition