Brain Structure and Function

, Volume 223, Issue 8, pp 3813–3840 | Cite as

A domain-general brain network underlying emotional and cognitive interference processing: evidence from coordinate-based and functional connectivity meta-analyses

  • Taolin Chen
  • Benjamin Becker
  • Julia Camilleri
  • Li Wang
  • Shuqi Yu
  • Simon B. Eickhoff
  • Chunliang FengEmail author
Original Article


The inability to control or inhibit emotional distractors characterizes a range of psychiatric disorders. Despite the use of a variety of task paradigms to determine the mechanisms underlying the control of emotional interference, a precise characterization of the brain regions and networks that support emotional interference processing remains elusive. Here, we performed coordinate-based and functional connectivity meta-analyses to determine the brain networks underlying emotional interference. Paradigms addressing interference processing in the cognitive or emotional domain were included in the meta-analyses, particularly the Stroop, Flanker, and Simon tasks. Our results revealed a consistent involvement of the bilateral dorsal anterior cingulate cortex, anterior insula, left inferior frontal gyrus, and superior parietal lobule during emotional interference. Follow-up conjunction analyses identified correspondence in these regions between emotional and cognitive interference processing. Finally, the patterns of functional connectivity of these regions were examined using resting-state functional connectivity and meta-analytic connectivity modeling. These regions were strongly connected as a distributed system, primarily mapping onto fronto-parietal control, ventral attention, and dorsal attention networks. Together, the present findings indicate that a domain-general neural system is engaged across multiple types of interference processing and that regulating emotional and cognitive interference depends on interactions between large-scale distributed brain networks.


Emotional interference Cognitive control Activation likelihood estimation (ALE) Meta-analysis Meta-analytic connectivity modeling (MACM) Resting-state functional connectivity (RSFC) Large-scale network Functional decoding 



This work was supported by the National Postdoctoral Program for Innovative Talents under Grant agreement no. BX201600019 (to C.F.), the China Postdoctoral Science Foundation under Grant agreement nos. 2017M610055 (to C.F.) and 2013M530401 (to T.C.), the National Natural Science Foundation of China under Grant agreement nos. 81401398 (to T.C.), 91632117 (to B.B.), and 31500920 (to C.F.), and the National Institute of Mental Health (R01-MH074457, to E.S.), the Helmholtz Portfolio Theme “Supercomputing and Modeling for the Human Brain” and the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement no. 7202070 (HBP SGA1, to E.S.).

Compliance with ethical standards

Conflict of interest

The authors are unaware of any conflicts of interest, financial or otherwise.

Ethical approval

The study was approved by the Ethics Committee of Beijing Normal University.

Informed consent

Not applicable. This is a meta-analytic study.

Supplementary material

429_2018_1727_MOESM1_ESM.docx (4 mb)
Supplementary material 1 (DOCX 4121 KB)


  1. Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8(4):170–177Google Scholar
  2. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26(3):839–851Google Scholar
  3. Aupperle RL, Melrose AJ, Francisco A, Paulus MP, Stein MB (2015) Neural substrates of approach-avoidance conflict decision-making. Hum Brain Mapp 36(2):449–462Google Scholar
  4. Bang L, Rø Ø, Endestad T (2016) Amygdala alterations during an emotional conflict task in women recovered from anorexia nervosa. Psychiatry Res Neuroimaging 248:126–133Google Scholar
  5. Barrett LF, Satpute AB (2013) Large-scale brain networks in affective and social neuroscience: towards an integrative functional architecture of the brain. Curr Opin Neurobiol 23(3):361–372PubMedPubMedCentralGoogle Scholar
  6. Bartra O, McGuire JT, Kable JW (2013) The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage 76:412–427PubMedPubMedCentralGoogle Scholar
  7. Beall PM, Herbert AM (2008) The face wins: stronger automatic processing of affect in facial expressions than words in a modified Stroop task. Cogn Emot 22(8):1613–1642Google Scholar
  8. Behrmann M, Geng JJ, Shomstein S (2004) Parietal cortex and attention. Curr Opin Neurobiol 14(2):212–217Google Scholar
  9. Bishop S, Duncan J, Lawrence AD (2004) Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli. Nat Neurosci 7(2):184–188. CrossRefGoogle Scholar
  10. Botvinick MM (2007) Conflict monitoring and decision making: reconciling two perspectives on anterior cingulate function. Cogn Affect Behav Neurosci 7(4):356–366Google Scholar
  11. Braem S, Abrahamse EL, Duthoo W, Notebaert W (2014) What determines the specificity of conflict adaptation? A review, critical analysis, and proposed synthesis. Front Psychol 5:1134PubMedPubMedCentralGoogle Scholar
  12. Braem S, King JA, Korb FM, Krebs RM, Notebaert W, Egner T (2017) The role of anterior cingulate cortex in the affective evaluation of conflict. J Cogn Neurosci 29(1):137–149Google Scholar
  13. Buhle JT, Silvers JA, Wager TD, Lopez R, Onyemekwu C, Kober H, Weber J, Ochsner KN (2014) Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies. Cereb Cortex 24(11):2981–2990Google Scholar
  14. Bunge SA, Hazeltine E, Scanlon MD, Rosen AC, Gabrieli JD (2002) Dissociable contributions of prefrontal and parietal cortices to response selection. Neuroimage 17(3):1562–1571Google Scholar
  15. Chechko N, Wehrle R, Erhardt A, Holsboer F, Czisch M, Sämann PG (2009) Unstable prefrontal response to emotional conflict and activation of lower limbic structures and brainstem in remitted panic disorder. PLoS One 4(5):e5537PubMedPubMedCentralGoogle Scholar
  16. Chechko N, Kellermann T, Zvyagintsev M, Augustin M, Schneider F, Habel U (2012) Brain circuitries involved in semantic interference by demands of emotional and non-emotional distractors. PLoS One 7(5):e38155. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chechko N, Augustin M, Zvyagintsev M, Schneider F, Habel U, Kellermann T (2013) Brain circuitries involved in emotional interference task in major depression disorder. J Affect Disord 149(1):136–145Google Scholar
  18. Chechko N, Kellermann T, Schneider F, Habel U (2014) Conflict adaptation in emotional task underlies the amplification of target. Emotion 14(2):321Google Scholar
  19. Chen T, Kendrick KM, Feng C, Yang S, Wang X, Yang X, Lei D, Wu M, Huang X, Gong Q (2014) Opposite effect of conflict context modulation on neural mechanisms of cognitive and affective control. Psychophysiology 51(5):478–488Google Scholar
  20. Chen T, Kendrick KM, Feng C, Sun S, Yang X, Wang X, Luo W, Yang S, Huang X, Valdés-Sosa PA (2016) Dissociable early attentional control mechanisms underlying cognitive and affective conflicts. Sci Rep 6:37633PubMedPubMedCentralGoogle Scholar
  21. Chiew KS, Braver TS (2011) Neural circuitry of emotional and cognitive conflict revealed through facial expressions. PLoS One 6(3):e17635PubMedPubMedCentralGoogle Scholar
  22. Choi EY, Yeo BT, Buckner RL (2012) The organization of the human striatum estimated by intrinsic functional connectivity. J Neurophysiol 108(8):2242–2263PubMedPubMedCentralGoogle Scholar
  23. Cieslik EC, Zilles K, Kurth F, Eickhoff SB (2010) Dissociating bottom-up and top-down processes in a manual stimulus-response compatibility task. J Neurophysiol 104(3):1472–1483PubMedPubMedCentralGoogle Scholar
  24. Cieslik EC, Mueller VI, Eickhoff CR, Langner R, Eickhoff SB (2015) Three key regions for supervisory attentional control: evidence from neuroimaging meta-analyses. Neurosci Biobehav Rev 48:22–34. CrossRefPubMedGoogle Scholar
  25. Cole MW, Schneider W (2007) The cognitive control network: integrated cortical regions with dissociable functions. Neuroimage 37(1):343–360PubMedGoogle Scholar
  26. Cole MW, Repovš G, Anticevic A (2014) The frontoparietal control system: a central role in mental health. Neuroscientist 20(6):652–664PubMedPubMedCentralGoogle Scholar
  27. Collignon O, Girard S, Gosselin F, Roy S, Saint-Amour D, Lassonde M, Lepore F (2008) Audio-visual integration of emotion expression. Brain Res 1242:126–135PubMedGoogle Scholar
  28. Comte M, Schön D, Coull JT, Reynaud E, Khalfa S, Belzeaux R, Ibrahim EC, Guedj E, Blin O, Weinberger DR (2014) Dissociating bottom-up and top-down mechanisms in the cortico-limbic system during emotion processing. Cereb Cortex 26(1):144–155PubMedGoogle Scholar
  29. Corbetta M, Kincade JM, Ollinger JM, McAvoy MP, Shulman GL (2000) Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat Neurosci 3(3):292–297PubMedGoogle Scholar
  30. Cromheeke S, Mueller SC (2014) Probing emotional influences on cognitive control: an ALE meta-analysis of cognition emotion interactions. Brain Struct Funct 219(3):995–1008PubMedPubMedCentralGoogle Scholar
  31. De Gelder B, Vroomen J (2000) The perception of emotions by ear and by eye. Cogn Emot 14(3):289–311Google Scholar
  32. Delaveau P, Jabourian M, Lemogne C, Guionnet S, Bergouignan L, Fossati P (2011) Brain effects of antidepressants in major depression: a meta-analysis of emotional processing studies. J Affect Disord 130(1):66–74PubMedPubMedCentralGoogle Scholar
  33. Derrfuss J, Brass M, Neumann J, von Cramon DY (2005) Involvement of the inferior frontal junction in cognitive control: meta-analyses of switching and Stroop studies. Hum Brain Mapp 25(1):22–34PubMedPubMedCentralGoogle Scholar
  34. Dolan RJ, Morris JS, de Gelder B (2001) Crossmodal binding of fear in voice and face. Proc Natl Acad Sci 98(17):10006–10010PubMedPubMedCentralGoogle Scholar
  35. Dosenbach NU, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC, Burgund ED, Grimes AL, Schlaggar BL, Petersen SE (2006) A core system for the implementation of task sets. Neuron 50(5):799–812PubMedPubMedCentralGoogle Scholar
  36. Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, Fox MD, Snyder AZ, Vincent JL, Raichle ME (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci 104(26):11073–11078PubMedPubMedCentralGoogle Scholar
  37. Dosenbach NU, Fair DA, Cohen AL, Schlaggar BL, Petersen SE (2008) A dual-networks architecture of top-down control. Trends Cogn Sci 12(3):99–105PubMedPubMedCentralGoogle Scholar
  38. Dreisbach G, Fischer R (2012) Conflicts as aversive signals. Brain Cogn 78(2):94–98PubMedPubMedCentralGoogle Scholar
  39. Dreisbach G, Fischer R (2015) Conflicts as aversive signals for control adaptation. Curr Dir Psychol Sci 24(4):255–260Google Scholar
  40. Duncan J (2010) The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn Sci 14(4):172–179PubMedPubMedCentralGoogle Scholar
  41. Duncan J (2013) The structure of cognition: attentional episodes in mind and brain. Neuron 80(1):35–50PubMedPubMedCentralGoogle Scholar
  42. Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 23(10):475–483PubMedPubMedCentralGoogle Scholar
  43. Egner T (2008) Multiple conflict-driven control mechanisms in the human brain. Trends Cogn Sci 12(10):374–380PubMedPubMedCentralGoogle Scholar
  44. Egner T (2014) Creatures of habit (and control): a multi-level learning perspective on the modulation of congruency effects. Front Psychol 5:1247PubMedPubMedCentralGoogle Scholar
  45. Egner T, Hirsch J (2005) Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nat Neurosci 8(12):1784–1790PubMedPubMedCentralGoogle Scholar
  46. Egner T, Etkin A, Gale S, Hirsch J (2008) Dissociable neural systems resolve conflict from emotional versus nonemotional distracters. Cereb Cortex 18(6):1475–1484. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT (2009) Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp 30(9):2907–2926PubMedPubMedCentralGoogle Scholar
  48. Eickhoff SB, Bzdok D, Laird AR, Roski C, Caspers S, Zilles K, Fox PT (2011) Co-activation patterns distinguish cortical modules, their connectivity and functional differentiation. Neuroimage 57(3):938–949PubMedPubMedCentralGoogle Scholar
  49. Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT (2012) Activation likelihood estimation meta-analysis revisited. Neuroimage 59(3):2349–2361PubMedPubMedCentralGoogle Scholar
  50. Eickhoff SB, Laird AR, Fox PM, Lancaster JL, Fox PT (2017) Implementation errors in the GingerALE Software: description and recommendations. Hum Brain Mapp 38(1):7–11PubMedPubMedCentralGoogle Scholar
  51. Eriksen B, Eriksen C (1974) Effects of noise letters upon the identification of a target letter in a nonsearch task. Atten Percept Psychophys 16(1):143–149. CrossRefGoogle Scholar
  52. Etkin A, Schatzberg AF (2011) Common abnormalities and disorder-specific compensation during implicit regulation of emotional processing in generalized anxiety and major depressive disorders. Am J Psychiatry 168(9):968–978PubMedPubMedCentralGoogle Scholar
  53. Etkin A, Egner T, Peraza DM, Kandel ER, Hirsch J (2006) Resolving emotional conflict: a role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron 51(6):871–882PubMedPubMedCentralGoogle Scholar
  54. Etkin A, Prater KE, Hoeft F, Menon V, Schatzberg AF (2010) Failure of anterior cingulate activation and connectivity with the amygdala during implicit regulation of emotional processing in generalized anxiety disorder. Am J Psychiatry 167(5):545–554PubMedPubMedCentralGoogle Scholar
  55. Etkin A, Egner T, Kalisch R (2011) Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci 15(2):85–93PubMedPubMedCentralGoogle Scholar
  56. Etkin A, Büchel C, Gross JJ (2015) The neural bases of emotion regulation. Nat Rev Neurosci 16(11):693PubMedPubMedCentralGoogle Scholar
  57. Eugène F, Joormann J, Cooney RE, Atlas LY, Gotlib IH (2010) Neural correlates of inhibitory deficits in depression. Psychiatry Res Neuroimaging 181(1):30–35Google Scholar
  58. Fan Y, Duncan NW, de Greck M, Northoff G (2011) Is there a core neural network in empathy? An fMRI based quantitative meta-analysis. Neurosci Biobehav Rev 35(3):903–911PubMedPubMedCentralGoogle Scholar
  59. Feng C, Luo YJ, Krueger F (2015) Neural signatures of fairness-related normative decision making in the ultimatum game: a coordinate-based meta-analysis. Hum Brain Mapp 36(2):591–602PubMedPubMedCentralGoogle Scholar
  60. Feng C, Becker B, Huang W, Wu X, Eickhoff SB, Chen T (2018) Neural substrates of the emotion-word and emotional counting Stroop tasks in healthy and clinical populations: a meta-analysis of functional brain imaging studies. NeuroImage 173:258–274PubMedPubMedCentralGoogle Scholar
  61. Fleury V, Cousin E, Czernecki V, Schmitt E, Lhommée E, Poncet A, Fraix V, Troprès I, Pollak P, Krainik A (2014) Dopaminergic modulation of emotional conflict in Parkinson’s disease. Front Aging Neurosci 6:164PubMedPubMedCentralGoogle Scholar
  62. Fonzo GA, Goodkind MS, Oathes DJ, Zaiko YV, Harvey M, Peng KK, Weiss ME, Thompson AL, Zack SE, Lindley SE (2017) PTSD psychotherapy outcome predicted by brain activation during emotional reactivity and regulation. Am J Psychiatry 174(12):1163–1174PubMedPubMedCentralGoogle Scholar
  63. Fouragnan E, Retzler C, Philiastides MG (2018) Separate neural representations of prediction error valence and surprise: evidence from an fMRI meta-analysis. Hum Brain Mapp 39(7):2887–2906PubMedPubMedCentralGoogle Scholar
  64. Froeliger B, Modlin LA, Kozink RV, Wang L, McClernon FJ (2012) Smoking abstinence and depressive symptoms modulate the executive control system during emotional information processing. Addict Biol 17(3):668–679PubMedPubMedCentralGoogle Scholar
  65. Frühholz S, Fehr T, Herrmann M (2009) Interference control during recognition of facial affect enhances the processing of expression specific properties—an event-related fMRI study. Brain Res 1269:143–157PubMedPubMedCentralGoogle Scholar
  66. Garrison J, Erdeniz B, Done J (2013) Prediction error in reinforcement learning: a meta-analysis of neuroimaging studies. Neurosci Biobehav Rev 37(7):1297–1310PubMedPubMedCentralGoogle Scholar
  67. Godinez DA, McRae K, Andrews-Hanna JR, Smolker H, Banich MT (2016) Differences in frontal and limbic brain activation in a small sample of monozygotic twin pairs discordant for severe stressful life events. Neurobiol Stress 5:26–36PubMedPubMedCentralGoogle Scholar
  68. Goodkind M, Eickhoff SB, Oathes DJ, Jiang Y, Chang A, Jones-Hagata LB, Ortega BN, Zaiko YV, Roach EL, Korgaonkar MS (2015) Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72(4):305–315PubMedPubMedCentralGoogle Scholar
  69. Griffanti L, Salimi-Khorshidi G, Beckmann CF, Auerbach EJ, Douaud G, Sexton CE, Zsoldos E, Ebmeier KP, Filippini N, Mackay CE (2014) ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. Neuroimage 95:232–247PubMedPubMedCentralGoogle Scholar
  70. Haas BW, Omura K, Constable RT, Canli T (2006) Interference produced by emotional conflict associated with anterior cingulate activation. Cogn Affect Behav Neurosci 6(2):152–156Google Scholar
  71. Haas BW, Omura K, Constable RT, Canli T (2007) Emotional conflict and neuroticism: personality-dependent activation in the amygdala and subgenual anterior cingulate. Behav Neurosci 121(2):249Google Scholar
  72. Hart SJ, Green SR, Casp M, Belger A (2010) Emotional priming effects during Stroop task performance. Neuroimage 49(3):2662–2670Google Scholar
  73. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293(5539):2425–2430Google Scholar
  74. Houwer JD, Hermans D (1994) Differences in the affective processing of words and pictures. Cogn Emot 8(1):1–20Google Scholar
  75. Huang J, Wang Y, Jin Z, Di X, Yang T, Gur RC, Gur RE, Shum DH, Cheung EF, Chan RC (2013) Happy facial expression processing with different social interaction cues: an fMRI study of individuals with schizotypal personality traits. Prog Neuropsychopharmacol Biol Psychiatry 44:108–117Google Scholar
  76. Jarcho JM, Fox NA, Pine DS, Etkin A, Leibenluft E, Shechner T, Ernst M (2013) The neural correlates of emotion-based cognitive control in adults with early childhood behavioral inhibition. Biol Psychol 92(2):306–314PubMedPubMedCentralGoogle Scholar
  77. Kalisch R (2009) The functional neuroanatomy of reappraisal: time matters. Neurosci Biobehav Rev 33(8):1215–1226PubMedPubMedCentralGoogle Scholar
  78. Kanske P, Kotz SA (2010) Emotion triggers executive attention: anterior cingulate cortex and amygdala responses to emotional words in a conflict task. Hum Brain Mapp 32(2):198–208. CrossRefPubMedPubMedCentralGoogle Scholar
  79. Kim H (2014) Involvement of the dorsal and ventral attention networks in oddball stimulus processing: a meta-analysis. Hum Brain Mapp 35(5):2265–2284PubMedPubMedCentralGoogle Scholar
  80. Klasen M, Kenworthy CA, Mathiak KA, Kircher TT, Mathiak K (2011) Supramodal representation of emotions. J Neurosci 31(38):13635–13643Google Scholar
  81. Kober H, Mende-Siedlecki P, Kross EF, Weber J, Mischel W, Hart CL, Ochsner KN (2010) Prefrontal–striatal pathway underlies cognitive regulation of craving. Proc Natl Acad Sci 107(33):14811–14816Google Scholar
  82. Koenigs M, Barbey AK, Postle BR, Grafman J (2009) Superior parietal cortex is critical for the manipulation of information in working memory. J Neurosci 29(47):14980–14986PubMedPubMedCentralGoogle Scholar
  83. Kohn N, Eickhoff SB, Scheller M, Laird AR, Fox PT, Habel U (2014) Neural network of cognitive emotion regulation—an ALE meta-analysis and MACM analysis. Neuroimage 87:345–355Google Scholar
  84. Krug M, Carter C (2010) Adding fear to conflict: a general purpose cognitive control network is modulated by trait anxiety. Cogn Affect Behav Neurosci 10(3):357–371. CrossRefGoogle Scholar
  85. Krug MK, Carter CS (2012) Proactive and reactive control during emotional interference and its relationship to trait anxiety. Brain Res 1481:13–36PubMedPubMedCentralGoogle Scholar
  86. Kühn S, Müller BC, van der Leij A, Dijksterhuis A, Brass M, van Baaren RB (2010) Neural correlates of emotional synchrony. Soc Cogn Affect Neurosci 6(3):368–374PubMedPubMedCentralGoogle Scholar
  87. Laird AR, Fox PM, Price CJ, Glahn DC, Uecker AM, Lancaster JL, Turkeltaub PE, Kochunov P, Fox PT (2005a) ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp 25(1):155–164Google Scholar
  88. Laird AR, McMillan KM, Lancaster JL, Kochunov P, Turkeltaub PE, Pardo JV, Fox PT (2005b) A comparison of label-based review and ALE meta-analysis in the Stroop task. Hum Brain Mapp 25(1):6–21Google Scholar
  89. Laird AR, Eickhoff SB, Kurth F, Fox PM, Uecker AM, Turner JA, Robinson JL, Lancaster JL, Fox PT (2009a) ALE meta-analysis workflows via the brainmap database: progress towards a probabilistic functional brain atlas. Front Neuroinform 3:23PubMedPubMedCentralGoogle Scholar
  90. Laird AR, Eickhoff SB, Li K, Robin DA, Glahn DC, Fox PT (2009b) Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. J Neurosci 29(46):14496–14505PubMedPubMedCentralGoogle Scholar
  91. Langner R, Rottschy C, Laird AR, Fox PT, Eickhoff SB (2014) Meta-analytic connectivity modeling revisited: controlling for activation base rates. NeuroImage 99:559–570PubMedGoogle Scholar
  92. Langner R, Leiberg S, Hoffstaedter F, Eickhoff SB (2018) Towards a human self-regulation system: common and distinct neural signatures of emotional and behavioural control. Neurosci Biobehav Rev 90:400–410PubMedGoogle Scholar
  93. Lee T-W, Dolan RJ, Critchley HD (2007) Controlling emotional expression: behavioral and neural correlates of nonimitative emotional responses. Cereb Cortex 18(1):104–113PubMedPubMedCentralGoogle Scholar
  94. Lee H, Heller AS, Van Reekum CM, Nelson B, Davidson RJ (2012) Amygdala–prefrontal coupling underlies individual differences in emotion regulation. Neuroimage 62(3):1575–1581PubMedPubMedCentralGoogle Scholar
  95. Levy BJ, Wagner AD (2011) Cognitive control and right ventrolateral prefrontal cortex: reflexive reorienting, motor inhibition, and action updating. Ann N Y Acad Sci 1224(1):40–62PubMedPubMedCentralGoogle Scholar
  96. Liu T, Slotnick SD, Serences JT, Yantis S (2003) Cortical mechanisms of feature-based attentional control. Cereb Cortex 13(12):1334–1343Google Scholar
  97. Lückmann HC, Jacobs HI, Sack AT (2014) The cross-functional role of frontoparietal regions in cognition: internal attention as the overarching mechanism. Prog Neurobiol 116:66–86Google Scholar
  98. Luo Y, Eickhoff SB, Hétu S, Feng C (2018) Social comparison in the brain: a coordinate-based meta-analysis of functional brain imaging studies on the downward and upward comparisons. Hum Brain Mapp 39(1):440–458Google Scholar
  99. MacDonald AW, Cohen JD, Stenger VA, Carter CS (2000) Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288(5472):1835–1838Google Scholar
  100. MacLeod CM (1991) Half a century of research on the Stroop effect: an integrative review. Psychol Bull 109(2):163PubMedGoogle Scholar
  101. Maier ME, Di Pellegrino G (2012) Impaired conflict adaptation in an emotional task context following rostral anterior cingulate cortex lesions in humans. J Cogn Neurosci 24(10):2070–2079PubMedGoogle Scholar
  102. McTeague LM, Huemer J, Carreon DM, Jiang Y, Eickhoff SB, Etkin A (2017) Identification of common neural circuit disruptions in cognitive control across psychiatric disorders. Am J Psychiatry 174(7):676–685PubMedPubMedCentralGoogle Scholar
  103. Menon V (2011) Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci 15(10):483–506Google Scholar
  104. Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214(5–6):655–667PubMedPubMedCentralGoogle Scholar
  105. Mesulam M (1990) Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 28(5):597–613PubMedPubMedCentralGoogle Scholar
  106. Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24(1):167–202Google Scholar
  107. Mitchell RL (2006a) Does incongruence of lexicosemantic and prosodic information cause discernible cognitive conflict? Cogn Affect Behav Neurosci 6(4):298–305PubMedGoogle Scholar
  108. Mitchell RL (2006b) How does the brain mediate interpretation of incongruent auditory emotions? The neural response to prosody in the presence of conflicting lexico-semantic cues. Eur J Neurosci 24(12):3611–3618PubMedGoogle Scholar
  109. Mitchell RL (2013) Further characterisation of the functional neuroanatomy associated with prosodic emotion decoding. Cortex J Devot Study Nerv Syst Behav 49(6):1722–1732Google Scholar
  110. Mitchell RL, Elliott R, Barry M, Cruttenden A, Woodruff PW (2003) The neural response to emotional prosody, as revealed by functional magnetic resonance imaging. Neuropsychologia 41(10):1410–1421Google Scholar
  111. Müller VI, Habel U, Derntl B, Schneider F, Zilles K, Turetsky BI, Eickhoff SB (2011) Incongruence effects in crossmodal emotional integration. Neuroimage 54(3):2257–2266Google Scholar
  112. Nee DE, Wager TD, Jonides J (2007) Interference resolution: insights from a meta-analysis of neuroimaging tasks. Cogn Affect Behav Neurosci 7(1):1–17Google Scholar
  113. Nooner KB, Colcombe SJ, Tobe RH, Mennes M, Benedict MM, Moreno AL, Panek LJ, Brown S, Zavitz ST, Li Q (2012) The NKI-Rockland sample: a model for accelerating the pace of discovery science in psychiatry. Front Neurosci 6:152PubMedPubMedCentralGoogle Scholar
  114. Norman KA, Polyn SM, Detre GJ, Haxby JV (2006) Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn Sci 10(9):424–430Google Scholar
  115. Ochsner KN, Gross JJ (2005) The cognitive control of emotion. Trends Cogn Sci 9(5):242–249PubMedPubMedCentralGoogle Scholar
  116. Ochsner KN, Bunge SA, Gross JJ, Gabrieli JD (2002) Rethinking feelings: an FMRI study of the cognitive regulation of emotion. J Cogn Neurosci 14(8):1215–1229Google Scholar
  117. Ochsner KN, Hughes B, Robertson ER, Cooper JC, Gabrieli JD (2009) Neural systems supporting the control of affective and cognitive conflicts. J Cogn Neurosci 21(9):1842–1855. CrossRefGoogle Scholar
  118. Ochsner KN, Silvers JA, Buhle JT (2012) Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Ann N Y Acad Sci 1251(1): E1–E24PubMedPubMedCentralGoogle Scholar
  119. Offringa R, Brohawn KH, Staples LK, Dubois SJ, Hughes KC, Pfaff DL, VanElzakker MB, Davis FC, Shin LM (2013) Diminished rostral anterior cingulate cortex activation during trauma-unrelated emotional interference in PTSD. Biol Mood Anxiety Disord 3(1):10PubMedPubMedCentralGoogle Scholar
  120. Ovaysikia S, Chan JL, Tahir K, DeSouza JF (2011) Word wins over face: emotional Stroop effect activates the frontal cortical network. Front Hum Neurosci 4:234PubMedPubMedCentralGoogle Scholar
  121. Pan F, Shi L, Lu Q, Wu X, Xue S, Li Q (2016) The negative priming effect in cognitive conflict processing. Neurosci Lett 628:35–39Google Scholar
  122. Park IH, Park H-J, Chun J-W, Kim EY, Kim J-J (2008) Dysfunctional modulation of emotional interference in the medial prefrontal cortex in patients with schizophrenia. Neurosci Lett 440(2):119–124Google Scholar
  123. Peelen MV, Downing PE (2007) Using multi-voxel pattern analysis of fMRI data to interpret overlapping functional activations. Trends Cogn Sci 11(1):4–5Google Scholar
  124. Pessoa L (2008) On the relationship between emotion and cognition. Nat Rev Neurosci 9(2):148–158Google Scholar
  125. Rey G, Desseilles M, Favre S, Dayer A, Piguet C, Aubry J-M, Vuilleumier P (2014) Modulation of brain response to emotional conflict as a function of current mood in bipolar disorder: preliminary findings from a follow-up state-based fMRI study. Psychiatry Res Neuroimaging 223(2):84–93Google Scholar
  126. Ridderinkhof KR, Van Den Wildenberg WP, Segalowitz SJ, Carter CS (2004) Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain Cogn 56(2):129–140Google Scholar
  127. Rota G, Veit R, Nardo D, Weiskopf N, Birbaumer N, Dogil G (2008) Processing of inconsistent emotional information: an fMRI study. Exp Brain Res 186(3):401–407Google Scholar
  128. Salimi-Khorshidi G, Douaud G, Beckmann CF, Glasser MF, Griffanti L, Smith SM (2014) Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Neuroimage 90:449–468PubMedPubMedCentralGoogle Scholar
  129. Samanez-Larkin GR, Robertson ER, Mikels JA, Carstensen LL, Gotlib IH (2009) Selective attention to emotion in the aging brain. Psychol Aging 24(3):519PubMedPubMedCentralGoogle Scholar
  130. Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Eickhoff SB, Hakonarson H, Gur RC, Gur RE (2013) An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64:240–256Google Scholar
  131. Schirmer A, Zysset S, Kotz SA, von Cramon DY (2004) Gender differences in the activation of inferior frontal cortex during emotional speech perception. NeuroImage 21(3):1114–1123PubMedPubMedCentralGoogle Scholar
  132. Schouppe N, Braem S, De Houwer J, Silvetti M, Verguts T, Ridderinkhof KR, Notebaert W (2015) No pain, no gain: the affective valence of congruency conditions changes following a successful response. Cogn Affect Behav Neurosci 15(1):251–261PubMedPubMedCentralGoogle Scholar
  133. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27(9):2349–2356PubMedPubMedCentralGoogle Scholar
  134. Sha Z, Xia M, Lin Q, Cao M, Tang Y, Xu K, Song H, Wang Z, Wang F, Fox PT (2017) Meta-connectomic analysis reveals commonly disrupted functional architectures in network modules and connectors across brain disorders. Cereb Cortex. CrossRefPubMedPubMedCentralGoogle Scholar
  135. Silvers JA, Insel C, Powers A, Franz P, Helion C, Martin RE, Weber J, Mischel W, Casey BJ, Ochsner KN (2017) vlPFC–vmPFC–Amygdala interactions underlie age-related differences in cognitive regulation of emotion. Cereb Cortex 27(7):3502–3514. CrossRefPubMedPubMedCentralGoogle Scholar
  136. Simon JR, Craft JL, Small AM (1971) Reactions toward the apparent source of an auditory stimulus. J Exp Psychol 89(1):203–206. CrossRefPubMedPubMedCentralGoogle Scholar
  137. Song S, Zilverstand A, Song H, Uquillas FdO, Wang Y, Xie C, Cheng L, Zou Z (2017) The influence of emotional interference on cognitive control: a meta-analysis of neuroimaging studies using the emotional Stroop task. Sci Rep 7(1):2088PubMedPubMedCentralGoogle Scholar
  138. Spielberg JM, Miller GA, Heller W, Banich MT (2015) Flexible brain network reconfiguration supporting inhibitory control. Proc Natl Acad Sci 112(32):10020–10025PubMedPubMedCentralGoogle Scholar
  139. Stenberg G, Wiking S, Dahl M (1998) Judging words at face value: interference in a word processing task reveals automatic processing of affective facial expressions. Cogn Emot 12(6):755–782Google Scholar
  140. Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18(6):643Google Scholar
  141. Swick D, Ashley V, Turken U (2008) Left inferior frontal gyrus is critical for response inhibition. BMC Neurosci 9(1):102PubMedPubMedCentralGoogle Scholar
  142. Thompson-Schill SL, Swick D, Farah MJ, D’Esposito M, Kan IP, Knight RT (1998) Verb generation in patients with focal frontal lesions: a neuropsychological test of neuroimaging findings. Proc Natl Acad Sci 95(26):15855–15860PubMedPubMedCentralGoogle Scholar
  143. Torres-Quesada M, Korb FM, Funes MJ, Lupianez J, Egner T (2014) Comparing neural substrates of emotional vs. non-emotional conflict modulation by global control context. Front Hum Neurosci 8:66. CrossRefPubMedPubMedCentralGoogle Scholar
  144. Turkeltaub PE, Eden GF, Jones KM, Zeffiro TA (2002) Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage 16(3):765–780PubMedPubMedCentralGoogle Scholar
  145. Turkeltaub PE, Eickhoff SB, Laird AR, Fox M, Wiener M, Fox P (2012) Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Hum Brain Mapp 33(1):1–13PubMedPubMedCentralGoogle Scholar
  146. Turner JA, Laird AR (2012) The cognitive paradigm ontology: design and application. Neuroinform 10(1):57–66Google Scholar
  147. Vanderhasselt M-A, Baeken C, Van Schuerbeek P, Luypaert R, De Mey J, De Raedt R (2013) How brooding minds inhibit negative material: an event-related fMRI study. Brain Cogn 81(3):352–359PubMedPubMedCentralGoogle Scholar
  148. Vartanian O, Skov M (2014) Neural correlates of viewing paintings: evidence from a quantitative meta-analysis of functional magnetic resonance imaging data. Brain Cogn 87:52–56PubMedPubMedCentralGoogle Scholar
  149. Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL (2008) Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol 100(6):3328–3342PubMedPubMedCentralGoogle Scholar
  150. Vrticka P, Lordier L, Bediou B, Sander D (2014) Human amygdala response to dynamic facial expressions of positive and negative surprise. Emotion 14(1):161–169PubMedPubMedCentralGoogle Scholar
  151. Wager TD, Lindquist M, Kaplan L (2007) Meta-analysis of functional neuroimaging data: current and future directions. Soc Cogn Affect Neurosci 2(2):150–158PubMedPubMedCentralGoogle Scholar
  152. Wager TD, Davidson ML, Hughes BL, Lindquist MA, Ochsner KN (2008) Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron 59(6):1037–1050PubMedPubMedCentralGoogle Scholar
  153. Wang L, LaBar KS, Smoski M, Rosenthal MZ, Dolcos F, Lynch TR, Krishnan RR, McCarthy G (2008) Prefrontal mechanisms for executive control over emotional distraction are altered in major depression. Psychiatry Res Neuroimaging 163(2):143–155Google Scholar
  154. Watanabe T, Yahata N, Kawakubo Y, Inoue H, Takano Y, Iwashiro N, Natsubori T, Takao H, Sasaki H, Gonoi W (2013) Network structure underlying resolution of conflicting non-verbal and verbal social information. Soc Cogn Affect Neurosci 9(6):767–775PubMedPubMedCentralGoogle Scholar
  155. Watson R, Latinus M, Noguchi T, Garrod O, Crabbe F, Belin P (2013) Dissociating task difficulty from incongruence in face-voice emotion integration. Front Hum Neurosci 7:744PubMedPubMedCentralGoogle Scholar
  156. Whitney C, Kirk M, O’sullivan J, Lambon Ralph MA, Jefferies E (2010) The neural organization of semantic control: TMS evidence for a distributed network in left inferior frontal and posterior middle temporal gyrus. Cereb Cortex 21(5):1066–1075PubMedPubMedCentralGoogle Scholar
  157. Wittfoth M, Schröder C, Schardt DM, Dengler R, Heinze H-J, Kotz SA (2010) On emotional conflict: interference resolution of happy and angry prosody reveals valence-specific effects. Cereb Cortex 20(2):383–392. CrossRefPubMedPubMedCentralGoogle Scholar
  158. Wu H, Luo Y, Feng C (2016) Neural signatures of social conformity: a coordinate-based activation likelihood estimation meta-analysis of functional brain imaging studies. Neurosci Biobehav Rev 71:101–111PubMedPubMedCentralGoogle Scholar
  159. Xu M, Xu G, Yang Y (2016) Neural systems underlying emotional and non-emotional interference processing: an ALE meta-analysis of functional neuroimaging studies. Front Behav Neurosci 10:220PubMedPubMedCentralGoogle Scholar
  160. Xue S, Wang X, Chang J, Liu J, Qiu J (2016) Amplitude of low-frequency oscillations associated with emotional conflict control. Exp Brain Res 234(9):2561–2566PubMedPubMedCentralGoogle Scholar
  161. Yantis S, Serences JT (2003) Cortical mechanisms of space-based and object-based attentional control. Curr Opin Neurobiol 13(2):187–193PubMedPubMedCentralGoogle Scholar
  162. Yantis S, Schwarzbach J, Serences JT, Carlson RL, Steinmetz MA, Pekar JJ, Courtney SM (2002) Transient neural activity in human parietal cortex during spatial attention shifts. Nat Neurosci 5(10):995–1002PubMedPubMedCentralGoogle Scholar
  163. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zöllei L, Polimeni JR (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106(3):1125–1165PubMedPubMedCentralGoogle Scholar
  164. Zaki J, Hennigan K, Weber J, Ochsner KN (2010) Social cognitive conflict resolution: contributions of domain-general and domain-specific neural systems. J Neurosci 30(25):8481–8488PubMedPubMedCentralGoogle Scholar
  165. Zhang R, Geng X, Lee TM (2017) Large-scale functional neural network correlates of response inhibition: an fMRI meta-analysis. Brain Struct Funct 222(9):1–18Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Taolin Chen
    • 1
  • Benjamin Becker
    • 2
  • Julia Camilleri
    • 3
    • 4
  • Li Wang
    • 5
  • Shuqi Yu
    • 7
  • Simon B. Eickhoff
    • 3
    • 4
  • Chunliang Feng
    • 6
    • 7
    Email author
  1. 1.Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
  2. 2.Clinical Hospital of the Chengdu Brain Science Institute, MOE Key Laboratory for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduChina
  3. 3.Institute of Systems Neuroscience, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
  4. 4.Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7)Research Centre JülichJülichGermany
  5. 5.Collaborative Innovation Center of Assessment Toward Basic Education QualityBeijing Normal UniversityBeijingChina
  6. 6.College of Information Science and TechnologyBeijing Normal UniversityBeijingChina
  7. 7.State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina

Personalised recommendations