Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Prefrontal-hippocampal coupling by theta rhythm and by 2–5 Hz oscillation in the delta band: The role of the nucleus reuniens of the thalamus

Abstract

Rhythmic synchronizations of hippocampus (HC) and prefrontal cortex (PFC) at theta frequencies (4–8 Hz) are thought to mediate key cognitive functions, and disruptions of HC-PFC coupling were implicated in psychiatric diseases. Theta coupling is thought to represent a HC-to-PFC drive transmitted via the well-described unidirectional HC projection to PFC. In comparison, communication in the PFC-to-HC direction is less understood, partly because no known direct anatomical connection exists. Two recent findings, i.e., reciprocal projections between the thalamic nucleus reuniens (nRE) with both PFC and HC and a unique 2–5 Hz rhythm reported in the PFC, indicate, however, that a second low-frequency oscillation may provide a synchronizing signal from PFC to HC via nRE. Thus, in this study, we recorded local field potentials in the PFC, HC, and nRE to investigate the role of nRE in PFC–HC coupling established by the two low-frequency oscillations. Using urethane-anesthetized rats and stimulation of pontine reticular formation to experimentally control the parameters of both forebrain rhythms, we found that theta and 2–5 Hz rhythm were dominant in HC and PFC, respectively, but were present and correlated in all three signals. Removal of nRE influence, either statistically (by partialization of PFC–HC correlation when controlling for the nRE signal) or pharmacologically (by lidocaine microinjection in nRE), resulted in decreased coherence between the PFC and HC 2–5-Hz oscillations, but had minimal effect on theta coupling. This study proposes a novel thalamo-cortical network by which PFC-to-HC coupling occurs via a 2–5 Hz oscillation and is mediated through the nRe.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Anderson KL, Rajagovindan R, Ghacibeh GA, Meador KJ, Ding M (2010) Theta oscillations mediate interaction between prefrontal cortex and medial temporal lobe in human memory. Cereb Cortex 20 (7):1604–1612. doi:10.1093/cercor/bhp223

  2. Benchenane K, Peyrache A, Khamassi M, Tierney PL, Gioanni Y, Battaglia FP, Wiener SI (2010) Coherent theta oscillations and reorganization of spike timing in the hippocampal- prefrontal network upon learning. Neuron 66(6):921–936. doi:10.1016/j.neuron.2010.05.013

  3. Buzsaki G (2002) Theta oscillations in the hippocampus. Neuron 33(3):325–340

  4. Cassel JC, Pereira de Vasconcelos A, Loureiro M, Cholvin T, Dalrymple-Alford JC, Vertes RP (2013) The reuniens and rhomboid nuclei: neuroanatomy, electrophysiological characteristics and behavioral implications. Prog Neurobiol 111:34–52. doi:10.1016/j.pneurobio.2013.08.006

  5. Cousijn H, Tunbridge EM, Rolinski M, Wallis G, Colclough GL, Woolrich MW, Nobre AC, Harrison PJ (2015) Modulation of hippocampal theta and hippocampal-prefrontal cortex function by a schizophrenia risk gene. Hum Brain Mapp 36(6):2387–2395. doi:10.1002/hbm.22778

  6. Deshmukh SS, Yoganarasimha D, Voicu H, Knierim JJ (2010) Theta modulation in the medial and the lateral entorhinal cortices. J Neurophysiol 104(2):994–1006. doi:10.1152/jn.01141.2009

  7. Dickerson DD, Wolff AR, Bilkey DK (2010) Abnormal long-range neural synchrony in a maternal immune activation animal model of schizophrenia. J Neurosci 30(37):12424–12431. doi:10.1523/jneurosci.3046-10.2010

  8. Dolleman-Van der Weel MJ, Wouterlood FG, Witter MP (1994) Multiple anterograde tracing, combining Phaseolus vulgaris leucoagglutinin with rhodamine- and biotin-conjugated dextran amine. J Neurosci Methods 51(1):9–21

  9. Duan AR, Varela C, Zhang Y, Shen Y, Xiong L, Wilson MA, Lisman J (2015) Delta frequency optogenetic stimulation of the thalamic nucleus reuniens is sufficient to produce working memory deficits: relevance to schizophrenia. Biol Psychiatry 77(12):1098–1107. doi:10.1016/j.biopsych.2015.01.020

  10. Dzirasa K, Coque L, Sidor MM, Kumar S, Dancy EA, Takahashi JS, McClung CA, Nicolelis MA (2010) Lithium ameliorates nucleus accumbens phase-signaling dysfunction in a genetic mouse model of mania. J Neurosci 30(48):16314–16323. doi:10.1523/jneurosci.4289-10.2010

  11. Ferino F, Thierry AM, Glowinski J (1987) Anatomical and electrophysiological evidence for a direct projection from Ammon’s horn to the medial prefrontal cortex in the rat. Exp Brain Res 65(2):421–426

  12. Fujisawa S, Buzsaki G (2011) A 4 Hz oscillation adaptively synchronizes prefrontal, VTA, and hippocampal activities. Neuron 72(1):153–165. doi:10.1016/j.neuron.2011.08.018

  13. Herkenham M (1978) The connections of the nucleus reuniens thalami: evidence for a direct thalamo-hippocampal pathway in the rat. J Comp Neurol 177(4):589–610. doi:10.1002/cne.901770405

  14. Hoover WB, Vertes RP (2007) Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 212 (2):149–179. doi:10.1007/s00429-007-0150-4

  15. Hyman JM, Zilli EA, Paley AM, Hasselmo ME (2005) Medial prefrontal cortex cells show dynamic modulation with the hippocampal theta rhythm dependent on behavior. Hippocampus 15(6):739–749. doi:10.1002/hipo.20106

  16. Ito HT, Zhang SJ, Witter MP, Moser EI, Moser MB (2015) A prefrontal-thalamo-hippocampal circuit for goal-directed spatial navigation. Nature 522(7554):50–55. doi:10.1038/nature14396

  17. Jay TM, Witter MP (1991) Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 313(4):574–586. doi:10.1002/cne.903130404

  18. Jones MW, Wilson MA (2005) Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS Biol 3 (12):e402. doi:10.1371/journal.pbio.0030402

  19. Kenney MJ, Gebber GL, Barman SM, Kocsis B (1990) Forebrain rhythm generators influence sympathetic activity in anesthetized cats. Am J Physiol 259(3):R572–R578

  20. Kiss T, Hoffmann WE, Hajos M (2011a) Delta oscillation and short-term plasticity in the rat medial prefrontal cortex: modelling NMDA hypofunction of schizophrenia. Int J Neuropsychopharmacol 14(1):29–42. doi:10.1017/s1461145710000271

  21. Kiss T, Hoffmann WE, Scott L, Kawabe TT, Milici AJ, Nilsen EA, Hajos M (2011d) Role of thalamic projection in NMDA receptor-induced disruption of cortical slow oscillation and short-term plasticity. Front Psychiatry 2:14. doi:10.3389/fpsyt.2011.00014

  22. Kramis R, Vanderwolf CH, Bland BH (1975) Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: relations to behavior and effects of atropine, diethyl ether, urethane, and pentobarbital. Exp Neurol 49(1 Pt 1):58–85

  23. Li S, Topchiy I, Kocsis B (2007) The effect of atropine administered in the medial septum or hippocampus on high- and low-frequency theta rhythms in the hippocampus of urethane anesthetized rats. Synapse 61 (6):412–419. doi:10.1002/syn.20388

  24. Ly S, Pishdari B, Lok LL, Hajos M, Kocsis B (2013) Activation of 5-HT6 receptors modulates sleep-wake activity and hippocampal theta oscillation. ACS Chem Neurosci 4 (1):191–199. doi:10.1021/cn300184t

  25. McKenna JT, Vertes RP (2004) Afferent projections to nucleus reuniens of the thalamus. J Comp Neurol 480(2):115–142. doi:10.1002/cne.20342

  26. McNaughton N, Sedgwick EM (1978) Reticular stimulation and hippocampal theta rhythm in rats: effects of drugs. Neuroscience 3(7):629–632

  27. McNaughton N, Kocsis B, Hajos M (2007) Elicited hippocampal theta rhythm: a screen for anxiolytic and procognitive drugs through changes in hippocampal function? Behav Pharmacol 18(5–6):329–346. doi:10.1097/FBP.0b013e3282ee82e3

  28. Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202. doi:10.1146/annurev.neuro.24.1.167 pii]

  29. Nagy D, Stoiljkovic M, Menniti FS, Hajos M (2016) Differential effects of an NR2B NAM and ketamine on synaptic potentiation and gamma synchrony: relevance to rapid-Onset Antidepressant Efficacy. Neuropsychopharmacology 41(6):1486–1494. doi:10.1038/npp.2015.298

  30. O’Neill PK, Gordon JA, Sigurdsson T (2013) Theta oscillations in the medial prefrontal cortex are modulated by spatial working memory and synchronize with the hippocampus through its ventral subregion. J Neurosci 33(35):14211–14224. doi:10.1523/jneurosci.2378-13.2013

  31. Rajasethupathy P, Sankaran S, Marshel JH, Kim CK, Ferenczi E, Lee SY, Berndt A, Ramakrishnan C, Jaffe A, Lo M, Liston C, Deisseroth K (2015) Projections from neocortex mediate top-down control of memory retrieval. Nature 526(7575):653–659. doi:10.1038/nature15389

  32. Sauseng P, Griesmayr B, Freunberger R, Klimesch W (2010) Control mechanisms in working memory: a possible function of EEG theta oscillations. Neurosci Biobehav Rev 34(7):1015–1022. doi:10.1016/j.neubiorev.2009.12.006

  33. Siapas AG, Lubenov EV, Wilson MA (2005) Prefrontal phase locking to hippocampal theta oscillations. Neuron 46(1):141–151. doi:10.1016/j.neuron.2005.02.028

  34. Sigurdsson T, Stark KL, Karayiorgou M, Gogos JA, Gordon JA (2010) Impaired hippocampal-prefrontal synchrony in a genetic mouse model of schizophrenia. Nature 464(7289):763–767. doi:10.1038/nature08855

  35. Swanson LW (1981) A direct projection from Ammon’s horn to prefrontal cortex in the rat. Brain Res 217(1):150–154

  36. Thierry AM, Gioanni Y, Degenetais E, Glowinski J (2000) Hippocampo-prefrontal cortex pathway: anatomical and electrophysiological characteristics. Hippocampus 10(4):411–419. doi:10.1002/1098-1063(2000)10:4<411::aid-hipo7>3.0.co;2-a

  37. Tort AB, Kramer MA, Thorn C, Gibson DJ, Kubota Y, Graybiel AM, Kopell NJ (2008) Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc Natl Acad Sci USA 105(51):20517–20522. doi:10.1073/pnas.0810524105

  38. Varela C, Kumar S, Yang JY, Wilson MA (2014) Anatomical substrates for direct interactions between hippocampus, medial prefrontal cortex, and the thalamic nucleus reuniens. Brain Struct Funct 219 (3):911–929. doi:10.1007/s00429-013-0543-5

  39. Vertes RP (1981) An analysis of ascending brain stem systems involved in hippocampal synchronization and desynchronization. J Neurophysiol 46(5):1140–1159

  40. Vertes RP, Kocsis B (1997) Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience 81(4):893–926

  41. Vertes RP, Hoover WB, Szigeti-Buck K, Leranth C (2007) Nucleus reuniens of the midline thalamus: link between the medial prefrontal cortex and the hippocampus. Brain Res Bull 71(6):601–609. doi:10.1016/j.brainresbull.2006.12.002

  42. Vertes RP, Linley SB, Hoover WB (2015) Limbic circuitry of the midline thalamus. Neurosci Biobehav Rev 54:89–107. doi:10.1016/j.neubiorev.2015.01.014

  43. Zhang Y, Yoshida T, Katz DB, Lisman JE (2012) NMDAR antagonist action in thalamus imposes delta oscillations on the hippocampus. J Neurophysiol 107(11):3181–3189. doi:10.1152/jn.00072.2012

Download references

Acknowledgements

This work was supported by the National Institute of Health (Grants R01 MH100820 and P01 HL095491).

Author information

Correspondence to Bernat Kocsis.

Additional information

A. Roy and F. P. Svensson have contributed equally this research.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roy, A., Svensson, F.P., Mazeh, A. et al. Prefrontal-hippocampal coupling by theta rhythm and by 2–5 Hz oscillation in the delta band: The role of the nucleus reuniens of the thalamus. Brain Struct Funct 222, 2819–2830 (2017). https://doi.org/10.1007/s00429-017-1374-6

Download citation

Keywords

  • Slow rhythms
  • Synchronization
  • 4 Hz oscillation
  • Thalamo-cortical network
  • Midline thalamus
  • Cortico-hippocampal coupling