Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Blindness alters the microstructure of the ventral but not the dorsal visual stream

Abstract

Visual deprivation from birth leads to reorganisation of the brain through cross-modal plasticity. Although there is a general agreement that the primary afferent visual pathways are altered in congenitally blind individuals, our knowledge about microstructural changes within the higher-order visual streams, and how this is affected by onset of blindness, remains scant. We used diffusion tensor imaging and tractography to investigate microstructural features in the dorsal (superior longitudinal fasciculus) and ventral (inferior longitudinal and inferior fronto-occipital fasciculi) visual pathways in 12 congenitally blind, 15 late blind and 15 normal sighted controls. We also studied six prematurely born individuals with normal vision to control for the effects of prematurity on brain connectivity. Our data revealed a reduction in fractional anisotropy in the ventral but not the dorsal visual stream for both congenitally and late blind individuals. Prematurely born individuals, with normal vision, did not differ from normal sighted controls, born at term. Our data suggest that although the visual streams are structurally developing without normal visual input from the eyes, blindness selectively affects the microstructure of the ventral visual stream regardless of the time of onset. We suggest that the decreased fractional anisotropy of the ventral stream in the two groups of blind subjects is the combined result of both degenerative and cross-modal compensatory processes, affecting normal white matter development.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alexander DC, Hubbard PL, Hall MG et al (2010) Orientationally invariant indices of axon diameter and density from diffusion MRI. Neuroimage 52:1374–1389. doi:10.1016/j.neuroimage.2010.05.043

  2. Amedi A, Malach R, Hendler T et al (2001) Visuo-haptic object-related activation in the ventral visual pathway. Nat Neurosci 4:324–330

  3. Amedi A, Jacobson G, Hendler T et al (2002) Convergence of visual and tactile shape processing in the human lateral occipital complex. Cereb Cortex 12:1202–1212. doi:10.1093/cercor/12.11.1202

  4. Basser PJ, Mattiello J, Lebihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267

  5. Bernal B, Altman N (2010) The connectivity of the superior longitudinal fasciculus: a tractography DTI study. Magn Reson Imaging 28:217–225. doi:10.1016/j.mri.2009.07.008

  6. Bonino D, Ricciardi E, Sani L et al (2008) Tactile spatial working memory activates the dorsal extrastriate cortical pathway in congenitally blind individuals. Arch Ital Biol 146:133–146

  7. Bourne JA (2010) Unravelling the development of the visual cortex: implications for plasticity and repair. J Anat 217:449–468. doi:10.1111/j.1469-7580.2010.01275.x

  8. Bridge H, Cowey A, Ragge N, Watkins K (2009) Imaging studies in congenital anophthalmia reveal preservation of brain architecture in “visual” cortex. Brain 132:3467–3480. doi:10.1093/brain/awp279

  9. Burton H (2003) Visual cortex activity in early and late blind people. J Neurosci 23:4005–4011

  10. Catani M, Thiebaut de Schotten M (2008) A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44:1105–1132. doi:10.1016/j.cortex.2008.05.004

  11. Catani M, Jones DK, Donato R, Ffytche DH (2003) Occipito-temporal connections in the human brain. Brain 126:2093–2107. doi:10.1093/brain/awg203

  12. Clarke S (1994) Modular organization of human extrastriate visual cortex: evidence from cytochrome oxidase pattern in normal and macular degeneration cases. Eur J Neurosci 6:725–736

  13. Cohen LG, Weeks RA, Sadato N et al (1999) Period of susceptibility for cross-modal plasticity in the blind. Ann Neurol 45:451–460

  14. Collignon O, Dormal G, Albouy G et al (2013) Impact of blindness onset on the functional organization and the connectivity of the occipital cortex. Brain 136:2769–2783. doi:10.1093/brain/awt176

  15. Descoteaux M, Deriche R, Knösche TR, Anwander A (2009) Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans Med Imaging 28:269–286. doi:10.1109/TMI.2008.2004424

  16. Ffytche DH, Blom JD, Catani M (2010) Disorders of visual perception. J Neurol Neurosurg Psychiatry 81:1280–1287. doi:10.1136/jnnp.2008.171348

  17. Fiehler K, Burke M, Bien S et al (2009) The human dorsal action control system develops in the absence of vision. Cereb Cortex 19:1–12. doi:10.1093/cercor/bhn067

  18. Horton JC, Hedley-Whyte ET (1984) Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex. Philos Trans R Soc Lond B Biol Sci 304:255–272. doi:10.2307/2396915

  19. Jang SH, Hong JH (2012) The anatomical characteristics of superior longitudinal fasciculus I in human brain: diffusion tensor tractography study. Neurosci Lett 506:146–148. doi:10.1016/j.neulet.2011.10.069

  20. Jellison BJ, Field AS, Medow J et al (2004) Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR Am J Neuroradiol 25:356–369

  21. Jespersen SN, Lundell H, Sønderby CK, Dyrby TB (2013) Orientationally invariant metrics of apparent compartment eccentricity from double pulsed field gradient diffusion experiments. NMR Biomed 26:1647–1662. doi:10.1002/nbm.2999

  22. Jespersen SN, Lundell H, Sønderby CK, Dyrby TB (2014) Commentary on “Microanisotropy imaging: quantification of microscopic diffusion anisotropy and orientation of order parameter by diffusion MRI with magic-angle spinning of the q-vector”. Front Phys. doi:10.3389/fphy.2014.00028

  23. Jeurissen B, Leemans A, Jones DK et al (2011) Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution. Hum Brain Mapp 32:461–479. doi:10.1002/hbm.21032

  24. Jezzard P, Balaban RS (1995) Correction for geometric distortions in echo planar images from B0 field variations. Magn Reson Med 34:65–73

  25. Jiang J, Zhu W, Shi F et al (2009) Thick visual cortex in the early blind. J Neurosci 29:2205–2211. doi:10.1523/JNEUROSCI.5451-08.2009

  26. Karlen SJ, Kahn DM, Krubitzer L (2006) Early blindness results in abnormal corticocortical and thalamocortical connections. Neuroscience 142:843–858. doi:10.1016/j.neuroscience.2006.06.055

  27. Klaver P, Marcar V, Martin E (2011) Neurodevelopment of the visual system in typically developing children. Prog Brain Res 189:113–136. doi:10.1016/B978-0-444-53884-0.00021-X

  28. Kravitz DJ, Saleem KS, Baker CI, Mishkin M (2011) A new neural framework for visuospatial processing. Nat Rev Neurosci 12:217–230. doi:10.1038/nrn3008

  29. Kravitz DJ, Saleem KS, Baker CI et al (2013) The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn Sci 17:26–49

  30. Kupers R, Ptito M (2011) Insights from darkness: what the study of blindness has taught us about brain structure and function. Prog Brain Res 192:17–31. doi:10.1016/B978-0-444-53355-5.00002-6

  31. Kupers R, Ptito M (2013) Compensatory plasticity and cross-modal reorganization following early visual deprivation. Neurosci Biobehav Rev 13:191–207

  32. Kupers R, Beaulieu-Lefebvre M, Schneider FC et al (2011a) Neural correlates of olfactory processing in congenital blindness. Neuropsychologia 49:2037–2044. doi:10.1016/j.neuropsychologia.2011.03.033

  33. Kupers R, Pietrini P, Ricciardi E, Ptito M (2011b) The nature of consciousness in the visually deprived brain. Front Psychol. 2:1–14. doi:10.3389/fpsyg.2011.00019

  34. Laemle LK, Strominger NL, Carpenter DO (2006) Cross-modal innervation of primary visual cortex by auditory fibers in congenitally anophthalmic mice. Neurosci Lett 396:108–112. doi:10.1016/j.neulet.2005.11.020

  35. Lasič S, Szczepankiewicz F, Eriksson S et al (2014) Microanisotropy imaging: quantification of microscopic diffusion anisotropy and orientational order parameter by diffusion MRI with magic-angle spinning of the q-vector. Front Phys 2:1–14. doi:10.3389/fphy.2014.00011

  36. Lawes INC, Barrick TR, Murugam V et al (2008) Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. Neuroimage 39:62–79. doi:10.1016/j.neuroimage.2007.06.041

  37. Lebel C, Walker L, Leemans A et al (2008) Microstructural maturation of the human brain from childhood to adulthood. Neuroimage 40:1044–1055. doi:10.1016/j.neuroimage.2007.12.053

  38. Leemans A, Jeurissen B, Sijbers J, Jones DK (2009) ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. International Society for Magnetic Resonance in Medicine, p 3537

  39. Li J, Liu Y, Qin W et al (2013) Age of onset of blindness affects brain anatomical networks constructed using diffusion tensor tractography. Cereb Cortex 23:542–551. doi:10.1093/cercor/bhs034

  40. Loenneker T, Klaver P, Bucher K et al (2011) Microstructural development: organizational differences of the fiber architecture between children and adults in dorsal and ventral visual streams. Hum Brain Mapp 32:935–946. doi:10.1002/hbm.21080

  41. Makris N, Kennedy DN, McInerney S et al (2005) Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 15:854–869. doi:10.1093/cercor/bhh186

  42. Martino J, Brogna C, Robles SG et al (2010) Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data. Cortex 46:691–699. doi:10.1016/j.cortex.2009.07.015

  43. Matteau I, Kupers R, Ricciardi E et al (2010) Beyond visual, aural and haptic movement perception: hMT+ is activated by electrotactile motion stimulation of the tongue in sighted and in congenitally blind individuals. Brain Res Bull 82:264–270. doi:10.1016/j.brainresbull.2010.05.001

  44. Noppeney U (2007) The effects of visual deprivation on functional and structural organization of the human brain. Neurosci Biobehav Rev 31:1169–1180. doi:10.1016/j.neubiorev.2007.04.012

  45. Noppeney U, Friston KJ, Ashburner J et al (2005) Early visual deprivation induces structural plasticity in gray and white matter. Curr Biol 15:R488–R490. doi:10.1016/j.cub.2005.06.053

  46. Nosarti C, Giouroukou E, Healy E et al (2008) Grey and white matter distribution in very preterm adolescents mediates neurodevelopmental outcome. Brain 131:205–217. doi:10.1093/brain/awm282

  47. Park H-J, Lee JD, Kim EY et al (2009) Morphological alterations in the congenital blind based on the analysis of cortical thickness and surface area. Neuroimage 47:98–106. doi:10.1016/j.neuroimage.2009.03.076

  48. Paus T (2010) Growth of white matter in the adolescent brain: myelin or axon? Brain Cogn 72:26–35. doi:10.1016/j.bandc.2009.06.002

  49. Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228:105–116. doi:10.1002/cne.902280110

  50. Pietrini P, Furey ML, Ricciardi E et al (2004) Beyond sensory images: object-based representation in the human ventral pathway. Proc Natl Acad Sci USA 101:5658–5663. doi:10.1073/pnas.0400707101

  51. Poirier C, Collignon O, Scheiber C et al (2006) Auditory motion perception activates visual motion areas in early blind subjects. Neuroimage 31:279–285. doi:10.1016/j.neuroimage.2005.11.036

  52. Ptito M, Schneider FCG, Paulson OB, Kupers R (2008) Alterations of the visual pathways in congenital blindness. Exp Brain Res 187:41–49. doi:10.1007/s00221-008-1273-4

  53. Ptito M, Matteau I, Gjedde A, Kupers R (2009) Recruitment of the middle temporal area by tactile motion in congenital blindness. NeuroReport 20:543–547. doi:10.1097/WNR.0b013e3283279909

  54. Ptito M, Matteau I, Zhi Wang A et al (2012) Crossmodal recruitment of the ventral visual stream in congenital blindness. Neural Plast. doi:10.1155/2012/304045

  55. Qin W, Liu Y, Jiang T, Yu C (2013) The development of visual areas depends differently on visual experience. PLoS ONE 8:e53784. doi:10.1371/journal.pone.0053784

  56. Reese TG, Heid O, Weisskoff RM, Wedeen VJ (2003) Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med 49:177–182. doi:10.1002/mrm.10308

  57. Renier LA, Anurova I, De Volder AG et al (2009) Multisensory integration of sounds and vibrotactile stimuli in processing streams for “What” and “Where”. J Neurosci 29:10950–10960. doi:10.1523/JNEUROSCI.0910-09.2009

  58. Renier LA, Anurova I, De Volder AG et al (2010) Preserved functional specialization for spatial processing in the middle occipital gyrus of the early blind. Neuron 68:138–148. doi:10.1016/j.neuron.2010.09.021

  59. Ricciardi E, Vanello N, Sani L et al (2007) The effect of visual experience on the development of functional architecture in hMT+. Cereb Cortex 17:2933–2939. doi:10.1093/cercor/bhm018

  60. Sadato N, Okada T, Honda M, Yonekura Y (2002) Critical period for cross-modal plasticity in blind humans: a functional MRI study. Neuroimage 16:389–400. doi:10.1006/nimg.2002.1111

  61. Schmahmann JD, Pandya DN, Wang R et al (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:630–653. doi:10.1093/brain/awl359

  62. Schoth F, Burgel U, Dorsch R et al (2006) Diffusion tensor imaging in acquired blind humans. Neurosci Lett 398:178–182. doi:10.1016/j.neulet.2005.12.088

  63. Shimony JS, Burton H, Epstein AA et al (2006) Diffusion tensor imaging reveals white matter reorganization in early blind humans. Cereb Cortex 16:1653–1661. doi:10.1093/cercor/bhj102

  64. Shu N, Li J, Li K et al (2009) Abnormal diffusion of cerebral white matter in early blindness. Hum Brain Mapp 30:220–227. doi:10.1002/hbm.20507

  65. Strnad L, Peelen MV, Bedny M, Caramazza A (2013) Multivoxel pattern analysis reveals auditory motion information in MT+ of both congenitally blind and sighted individuals. PLoS ONE 8:e63198

  66. Thiebaut de Schotten M, Dell’Acqua F, Forkel SJ et al (2011a) A lateralized brain network for visuospatial attention. Nat Neurosci 14:1245–1246. doi:10.1038/nn.2905

  67. Thiebaut De Schotten M, Dominic H, Bizzi A et al (2011b) Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography. Neuroimage 54:49–59. doi:10.1016/j.neuroimage.2010.07.055

  68. Tournier J-D, Mori S, Leemans A (2011) Diffusion tensor imaging and beyond. Magn Reson Med 65:1532–1556. doi:10.1002/mrm.22924

  69. Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale M, Mansfield RJW (eds) Analysis of visual behaviour, pp 549–586

  70. Vanlierde A, De Volder AG, Wanet-Defalque M-C, Veraart C (2003) Occipito-parietal cortex activation during visuo-spatial imagery in early blind humans. Neuroimage 19:698–709. doi:10.1016/S1053-8119(03)00153-8

  71. Vos SB, Jones DK, Viergever MA, Leemans A (2011) Partial volume effect as a hidden covariate in DTI analyses. Neuroimage 55:1566–1576. doi:10.1016/j.neuroimage.2011.01.048

  72. Vos SB, Jones DK, Jeurissen B et al (2012) The influence of complex white matter architecture on the mean diffusivity in diffusion tensor MRI of the human brain. Neuroimage 59:2208–2216. doi:10.1016/j.neuroimage.2011.09.086

  73. Voss P, Zatorre RJ (2012) Occipital cortical thickness predicts performance on pitch and musical tasks in blind individuals. Cereb Cortex 22:2455–2465. doi:10.1093/cercor/bhr311

  74. Wakana S, Jiang H, Nagae-poetscher LM, et al (2003) Radiology fiber tract based Atlas of radiology, pp 21–29

  75. Wakana S, Caprihan A, Panzenboeck MM et al (2007) Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 36:630–644. doi:10.1016/j.neuroimage.2007.02.049

  76. Wan CY, Wood AG, Chen J et al (2013) The influence of preterm birth on structural alterations of the vision-deprived brain. Cortex 49:1100–1109. doi:10.1016/j.cortex.2012.03.013

  77. Westin C-F, Maier SE, Mamata H et al (2002) Processing and visualization for diffusion tensor MRI. Med Image Anal 6:93–108

  78. Wheeler-Kingshott CAM, Cercignani M (2009) About “axial” and “radial” diffusivities. Magn Reson Med 61:1255–1260. doi:10.1002/mrm.21965

  79. Yu C, Shu N, Li J et al (2007) Plasticity of the corticospinal tract in early blindness revealed by quantitative analysis of fractional anisotropy based on diffusion tensor tractography. Neuroimage 36:411–417. doi:10.1016/j.neuroimage.2007.03.003

  80. Zhang H, Hubbard PL, Parker GJM, Alexander DC (2011) Axon diameter mapping in the presence of orientation dispersion with diffusion MRI. Neuroimage 56:1301–1315. doi:10.1016/j.neuroimage.2011.01.084

Download references

Acknowledgments

This work was supported by the Lundbeck Foundation (Grant number 3156-50-28667 to R.K. and grant number R59 A5399 [Grant of Excellence on Mapping, Modulation and Modelling the Control of Actions] to H.R.S.) and The Danish Council for Independent Research, Medical Sciences (grant number 09-063392, 0602-01340B to M.P.). We would like to thank all participants for their cooperation willingness and engagement in the experiments.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Correspondence to Nina L. Reislev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

429_2015_1078_MOESM1_ESM.pdf

Supplementary material can be found online at http://link.springer.com/ at the Brain Structure and Function journal. (PDF 5409 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reislev, N.L., Kupers, R., Siebner, H.R. et al. Blindness alters the microstructure of the ventral but not the dorsal visual stream. Brain Struct Funct 221, 2891–2903 (2016). https://doi.org/10.1007/s00429-015-1078-8

Download citation

Keywords

  • Tractography
  • White matter microstructure
  • Congenital and late blindness
  • Plasticity
  • Ventral and dorsal visual pathway