Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Insight from uncertainty: bootstrap-derived diffusion metrics differentially predict memory function among older adults

Abstract

Diffusion tensor imaging suffers from an intrinsic low signal-to-noise ratio. Bootstrap algorithms have been introduced to provide a non-parametric method to estimate the uncertainty of the measured diffusion parameters. To quantify the variability of the principal diffusion direction, bootstrap-derived metrics such as the cone of uncertainty have been proposed. However, bootstrap-derived metrics are not independent of the underlying diffusion profile. A higher mean diffusivity causes a smaller signal-to-noise ratio and, thus, increases the measurement uncertainty. Moreover, the goodness of the tensor model, which relies strongly on the complexity of the underlying diffusion profile, influences bootstrap-derived metrics as well. The presented simulations clearly depict the cone of uncertainty as a function of the underlying diffusion profile. Since the relationship of the cone of uncertainty and common diffusion parameters, such as the mean diffusivity and the fractional anisotropy, is not linear, the cone of uncertainty has a different sensitivity. In vivo analysis of the fornix reveals the cone of uncertainty to be a predictor of memory function among older adults. No significant correlation occurs with the common diffusion parameters. The present work not only demonstrates the cone of uncertainty as a function of the actual diffusion profile, but also discloses the cone of uncertainty as a sensitive predictor of memory function. Future studies should incorporate bootstrap-derived metrics to provide more comprehensive analysis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Basser PJ (1995) Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 8:333–344

  2. Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis—a technical review. NMR Biomed 15:456–467. doi:10.1002/nbm.783

  3. Basser PJ, Pajevic S (2000) Statistical artifacts in diffusion tensor MRI (DT-MRI) caused by background noise. Magn Reson Med 44:41–50

  4. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson Ser B 111:209–219

  5. Basser PJ Quantifying errors in fibre-tract direction and diffusion tensor field maps resulting from MR noise. In: 5th Annual Meeting ISMRM, Vancouver; 1997. p. 1740

  6. Basser PJ, Mattiello J, LeBihan D (1994a) Estimation of the effective self-diffusion tensor from the NMR spin echo. J magn reson Ser B 103:247–254

  7. Basser PJ, Mattiello J, LeBihan D (1994b) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267. doi:10.1016/S0006-3495(94)80775-1

  8. Bennett IJ, Huffman DJ, Stark CE (2014) Limbic tract integrity contributes to pattern separation performance across the lifespan. Cereb Cortex. doi:10.1093/cercor/bhu093

  9. Brickman AM et al (2008) Brain morphology in older African Americans, Caribbean Hispanics, and whites from northern Manhattan. Arch neurol 65:1053–1061. doi:10.1001/archneur.65.8.1053

  10. Chung S, Lu Y, Henry RG (2006) Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters. NeuroImage 33:531–541. doi:10.1016/j.neuroimage.2006.07.001

  11. Efron B (1979) Bootstrap methods—another look at the jackknife. Ann Stat 7:1–26. doi:10.1214/aos/1176344552

  12. Hall MG, Alexander DC (2009) Convergence and parameter choice for Monte-Carlo simulations of diffusion MRI. IEEE Trans Med Imaging 28:1354–1364. doi:10.1109/TMI.2009.2015756

  13. Jack CR Jr et al (2010) Update on the magnetic resonance imaging core of the Alzheimer’s disease neuroimaging initiative. Alzheimer’s Dement J Alzheimer’s Assoc 6:212–220. doi:10.1016/j.jalz.2010.03.004

  14. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) Fsl NeuroImage 62:782–790. doi:10.1016/j.neuroimage.2011.09.015

  15. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K (2005) Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53:1432–1440. doi:10.1002/mrm.20508

  16. Jones DK (2003) Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI. Magn Reson Med 49:7–12. doi:10.1002/mrm.10331

  17. Jones DK (2004) The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. Magn Reson Med 51:807–815. doi:10.1002/mrm.20033

  18. Jones DK (2008) Tractography gone wild: probabilistic fibre tracking using the wild bootstrap with diffusion tensor MRI. IEEE Trans Med Imaging 27:1268–1274. doi:10.1109/TMI.2008.922191

  19. Lauzon CB et al (2013) Simultaneous analysis and quality assurance for diffusion tensor imaging. PloS One 8:e61737. doi:10.1371/journal.pone.0061737

  20. Lazar M, Alexander AL (2005) Bootstrap white matter tractography (BOOT-TRAC). NeuroImage 24:524–532. doi:10.1016/j.neuroimage.2004.08.050

  21. Mielke MM et al (2009) Regionally-specific diffusion tensor imaging in mild cognitive impairment and Alzheimer’s disease. NeuroImage 46:47–55. doi:10.1016/j.neuroimage.2009.01.054

  22. Mori S, Barker PB (1999) Diffusion magnetic resonance imaging: its principle and applications. Anatomical rec 257:102–109

  23. Moseley M (2002) Diffusion tensor imaging and aging—a review. NMR Biomed 15:553–560. doi:10.1002/nbm.785

  24. Moudgil SS, Azzouz M, Al-Azzaz A, Haut M, Gutmann L (2000) Amnesia due to fornix infarction. Stroke 31:1418–1419

  25. Pajevic S, Basser PJ (2003) Parametric and non-parametric statistical analysis of DT-MRI data. J Magn Reson 161:1–14

  26. Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36:893–906

  27. Provenzale JM, Engelter ST, Petrella JR, Smith JS, MacFall JR (1999) Use of MR exponential diffusion-weighted images to eradicate T2 “shine-through” effect. Am J Roentgenol 172:537–539. doi:10.2214/ajr.172.2.9930819

  28. Ringman JM et al (2007) Diffusion tensor imaging in preclinical and presymptomatic carriers of familial Alzheimer’s disease mutations. Brain 130:1767–1776. doi:10.1093/brain/awm102

  29. Siedlecki KL, Manly JJ, Brickman AM, Schupf N, Tang MX, Stern Y (2010) Do neuropsychological tests have the same meaning in Spanish speakers as they do in English speakers? Neuropsychology 24:402–411. doi:10.1037/a0017515-07896-012

  30. Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage 17:1429–1436

  31. Stern Y, Andrews H, Pittman J, Sano M, Tatemichi T, Lantigua R, Mayeux R (1992) Diagnosis of dementia in a heterogeneous population development of a neuropsychological paradigm-based diagnosis of dementia and quantified correction for the effects of education. Arc neurol 49:453–460

  32. Sundgren PC, Dong Q, Gomez-Hassan D, Mukherji SK, Maly P, Welsh R (2004) Diffusion tensor imaging of the brain: review of clinical applications. Neuroradiology 46:339–350. doi:10.1007/s00234-003-1114-x

  33. Tucker DM, Roeltgen DP, Tully R, Hartmann J, Boxell C (1988) Memory dysfunction following unilateral transection of the fornix: a hippocampal disconnection syndrome. Cortex 24:465–472

  34. Valenstein E, Bowers D, Verfaellie M, Heilman KM, Day A, Watson RT (1987) Retrosplenial amnesia. Brain 110(Pt 6):1631–1646

  35. van Bruggen T, Stieltjes B, Thomann PA, Parzer P, Meinzer HP, Fritzsche KH (2012) Do Alzheimer-specific microstructural changes in mild cognitive impairment predict conversion? Psychiatry Res 203:184–193. doi:10.1016/j.pscychresns.2011.12.003

  36. Vorburger RS, Reischauer C, Boesiger P (2012) BootGraph: Probabilistic fiber tractography using bootstrap algorithms and graph theory. NeuroImage 66:426–435. doi:10.1016/j.neuroimage.2012.10.058

  37. Westin CF, Maier SE, Mamata H, Nabavi A, Jolesz FA, Kikinis R (2002) Processing and visualization for diffusion tensor MRI. Med Image Anal 6:93–108

  38. Whitcher B, Tuch DS, Wisco JJ, Sorensen AG, Wang L (2008) Using the wild bootstrap to quantify uncertainty in diffusion tensor imaging. Hum Brain Mapp 29:346–362. doi:10.1002/hbm.20395

  39. Yeh CH, Schmitt B, Le Bihan D, Li-Schlittgen JR, Lin CP, Poupon C (2013) Diffusion microscopist simulator: a general Monte Carlo simulation system for diffusion magnetic resonance imaging. PloS One 8:e76626. doi:10.1371/journal.pone.0076626

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (AG034189 and AG037212) and from the Swiss National Science Foundation (P2EZP3_148738).

Author information

Correspondence to Adam M. Brickman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vorburger, R.S., Habeck, C.G., Narkhede, A. et al. Insight from uncertainty: bootstrap-derived diffusion metrics differentially predict memory function among older adults. Brain Struct Funct 221, 507–514 (2016). https://doi.org/10.1007/s00429-014-0922-6

Download citation

Keywords

  • Diffusion tensor imaging
  • Bootstrap methods
  • Cone of uncertainty
  • White matter
  • Memory function