Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Nogo-A deletion increases the plasticity of the optokinetic response and changes retinal projection organization in the adult mouse visual system

Abstract

The inhibitory action of Nogo-A on axonal growth has been well described. However, much less is known about the effects that Nogo-A could exert on the plasticity of neuronal circuits under physiological conditions. We investigated the effects of Nogo-A knock-out (KO) on visual function of adult mice using the optokinetic response (OKR) and the monocular deprivation (MD)-induced OKR plasticity and analyzed the anatomical organization of the eye-specific retinal projections. The spatial frequency sensitivity was higher in intact Nogo-A KO than in wild-type (WT) mice. After MD, Nogo-A KO mice reached a significantly higher spatial frequency and contrast sensitivity. Bilateral ablation of the visual cortex did not affect the OKR sensitivity before MD but reduced the MD-induced enhancement of OKR by approximately 50 % in Nogo-A KO and WT mice. These results suggest that cortical and subcortical brain structures contribute to the OKR plasticity. The tracing of retinal projections to the dorsal lateral geniculate nucleus (dLGN) revealed that the segregation of eye-specific terminals was decreased in the adult Nogo-A KO dLGN compared with WT mice. Strikingly, MD of the right eye led to additional desegregation of retinal projections in the left dLGN of Nogo-A KO but not in WT mice. In particular, MD promoted ectopic varicosity formation in Nogo-A KO dLGN axons. The present data show that Nogo-A restricts visual experience-driven plasticity of the OKR and plays a role in the segregation and maintenance of retinal projections to the brain.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Akbik FV, Bhagat SM, Patel PR, Cafferty WB, Strittmatter SM (2013) Anatomical plasticity of adult brain is titrated by Nogo Receptor 1. Neuron 77(5):859–866. doi:10.1016/j.neuron.2012.12.027

  2. Benassi C, Lui F, Biral G, Ferrari R, Corazza R (1991) Correlation between amount of retinal afferents to the pretectal nucleus of the optic tract and dorsal terminal accessory optic nucleus and performance of horizontal optokinetic reflex in rat. Behav Brain Res 45(1):87–95. doi:10.1016/S0166-4328(05)80184-6

  3. Chapman B (2000) Necessity for afferent activity to maintain eye-specific segregation in ferret lateral geniculate nucleus. Science 287(5462):2479–2482. doi:10.1126/science.287.5462.2479

  4. Daw NW, Fox K, Sato H, Czepita D (1992) Critical period for monocular deprivation in the cat visual cortex. J Neurophysiol 67(1):197–202

  5. Delekate A, Zagrebelsky M, Kramer S, Schwab ME, Korte M (2011) NogoA restricts synaptic plasticity in the adult hippocampus on a fast time scale. Proc Natl Acad Sci USA 108(6):2569–2574. doi:10.1073/pnas.1013322108

  6. Demas J, Sagdullaev BT, Green E, Jaubert-Miazza L, McCall MA, Gregg RG, Wong RO, Guido W (2006) Failure to maintain eye-specific segregation in nob, a mutant with abnormally patterned retinal activity. Neuron 50(2):247–259. doi:10.1016/j.neuron.2006.03.033

  7. Dickendesher TL, Baldwin KT, Mironova YA, Koriyama Y, Raiker SJ, Askew KL, Wood A, Geoffroy CG, Zheng B, Liepmann CD, Katagiri Y, Benowitz LI, Geller HM, Giger RJ (2012) NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans. Nat Neurosci 15(5):703–712. doi:10.1038/nn.3070

  8. Douglas RM, Alam NM, Silver BD, McGill T, Tschetter WW, Prusky GT (2005) Independent visual threshold measurements in the two eyes of freely moving rats and mice using a virtual-reality optokinetic system. Vis Neurosci 22(5):677–684. doi:10.1017/S0952523805225166

  9. Eysel UT, Schweigart G, Mittmann T, Eyding D, Qu Y, Vandesande F, Orban G, Arckens L (1999) Reorganization in the visual cortex after retinal and cortical damage. Restor Neurol Neurosci 15(2–3):153–164

  10. Giolli RA, Blanks RH, Lui F (2006) The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function. Prog Brain Res 151:407–440. doi:10.1016/S0079-6123(05)51013-6

  11. Godement P, Salaun J, Imbert M (1984) Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse. J Comp Neurol 230:552–575. doi:10.1002/cne.902300406

  12. Gordon JA, Stryker MP (1996) Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J Neurosci 16(10):3274–3286

  13. Grasse KL, Cynader MS, Douglas RM (1984) Alterations in response properties in the lateral and dorsal terminal nuclei of the cat accessory optic system following visual cortex lesions. Exp Brain Res 55(1):69–80

  14. Hayhow WR, Webb C, Jervie A (1960) The accessory optic fiber system in the rat. J Comp Neurol 115(2):187–215. doi:10.1002/cne.901150207

  15. Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6(11):877–888. doi:10.1038/nrn1787

  16. Hensch TK, Fagiolini M, Mataga N, Stryker MP, Baekkeskov S, Kash SF (1998) Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282(5393):1504–1508

  17. Hofer SB, Mrsic-Flogel TD, Bonhoeffer T, Hubener M (2006) Prior experience enhances plasticity in adult visual cortex. Nat Neurosci 9(1):127–132. doi:10.1038/nn1610

  18. Hooks BM, Chen C (2006) Distinct roles for spontaneous and visual activity in remodeling of the retinogeniculate synapse. Neuron 52(2):281–291. doi:10.1016/j.neuron.2006.07.007

  19. Hooks BM, Chen C (2008) Vision triggers an experience-dependent sensitive period at the retinogeniculate synapse. J Neurosci 28(18):4807–4817. doi:10.1523/JNEUROSCI.4667-07.2008

  20. Hubel DH, Wiesel TN (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol 206(2):419–436

  21. Huber AB, Weinmann O, Brosamle C, Oertle T, Schwab ME (2002) Patterns of Nogo mRNA and protein expression in the developing and adult rat and after CNS lesions. J Neurosci 22(9):3553–3567

  22. Jaubert-Miazza L, Green E, Lo FS, Bui K, Mills J, Guido W (2005) Structural and functional composition of the developing retinogeniculate pathway in the mouse. Vis Neurosci 22(5):661–676. doi:10.1017/S0952523805225154

  23. Kiernan JA (1984) Chromoxane cyanine R. II. Staining of animal tissues by the dye and its iron complexes. J Microsc 134(Pt 1):25–39

  24. Lehmann K, Lowel S (2008) Age-dependent ocular dominance plasticity in adult mice. PLoS ONE 3(9):e3120. doi:10.1371/journal.pone.0003120

  25. Lehmann K, Schmidt KF, Lowel S (2012) Vision and visual plasticity in ageing mice. Restor Neurol Neurosci 30(2):161–178. doi:10.3233/RNN-2012-110192

  26. Linden DC, Guillery RW, Cucchiaro J (1981) The dorsal lateral geniculate nucleus of the normal ferret and its postnatal development. J Comp Neurol 203:89–211 doi:10.1002/cne.902030204

  27. McGee AW, Yang Y, Fischer QS, Daw NW, Strittmatter SM (2005) Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. Science 309(5744):2222–2226. doi:10.1126/science.1114362

  28. Muir-Robinson G, Hwang BJ, Feller MB (2002) Retinogeniculate axons undergo eye-specific segregation in the absence of eye-specific layers. J Neurosci 22(13):5259–5264

  29. Pak MW, Giolli RA, Pinto LH, Mangini NJ, Gregory KM, Vanable JW (1987) Retinopretectal and accessory optic projections of normal mice and the Okn-defective mutant mice beige, beige-J, and pearl. J Comp Neurol 258(3):435–446. doi:10.1002/cne.902580311

  30. Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, San Diego

  31. Penn AA, Riquelme PA, Feller MB, Shatz CJ (1998) Competition in retinogeniculate patterning driven by spontaneous activity. Science 279(5359):2108–2112

  32. Pernet V, Schwab ME (2012) The role of Nogo-A in axonal plasticity, regrowth and repair. Cell Tissue Res 349(1):97–104. doi:10.1007/s00441-012-1432-6

  33. Pernet V, Joly S, Dalkara D, Schwarz O, Christ F, Schaffer D, Flannery JG, Schwab ME (2012) Neuronal Nogo-A upregulation does not contribute to ER stress-associated apoptosis but participates in the regenerative response in the axotomized adult retina. Cell Death Differ 19(7):1096–1108. doi:10.1038/cdd.2011.191

  34. Pernet V, Joly S, Jordi N, Dalkara D, Guzik-Kornacka A, Flannery JG, Schwab ME (2013) Misguidance and modulation of axonal regeneration by Stat3 and Rho/ROCK signaling in the transparent optic nerve. Cell Death Dis 4:e734. doi:10.1038/cddis.2013.266

  35. Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L (2002) Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298(5596):1248–1251. doi:10.1126/science.1072699

  36. Prusky GT, Alam NM, Beekman S, Douglas RM (2004) Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest Ophthalmol Vis Sci 45(12):4611–4616. doi:10.1167/iovs.04-0541

  37. Prusky GT, Alam NM, Douglas RM (2006) Enhancement of vision by monocular deprivation in adult mice. J Neurosci 26(45):11554–11561. doi:10.1523/JNEUROSCI.3396-06.2006

  38. Rabchevsky AG, Fugaccia I, Sullivan PG, Scheff SW (2001) Cyclosporin A treatment following spinal cord injury to the rat: behavioral effects and stereological assessment of tissue sparing. J Neurotrauma 18(5):513–522. doi:10.1089/089771501300227314

  39. Raiker SJ, Lee H, Baldwin KT, Duan YT, Shrager P, Giger RJ (2010) Oligodendrocyte-myelin glycoprotein and nogo negatively regulate activity-dependent synaptic plasticity. J Neurosci 30(37):12432–12445. doi:10.1523/Jneurosci.0895-10.2010

  40. Sawtell NB, Frenkel MY, Philpot BD, Nakazawa K, Tonegawa S, Bear MF (2003) NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron 38(6):977–985. doi:10.1016/s0896-6273(03)00323-4

  41. Schwab ME (2010) Functions of Nogo proteins and their receptors in the nervous system. Nat Rev Neurosci 11(12):799–811. doi:10.1038/nrn2936

  42. Shutoh F, Ohki M, Kitazawa H, Itohara S, Nagao S (2006) Memory trace of motor learning shifts transsynaptically from cerebellar cortex to nuclei for consolidation. Neuroscience 139(2):767–777. doi:10.1016/j.neuroscience.2005.12.035

  43. Simonen M, Pedersen V, Weinmann O, Schnell L, Buss A, Ledermann B, Christ F, Sansig G, van der Putten H, Schwab ME (2003) Systemic deletion of the myelin-associated outgrowth inhibitor Nogo-A improves regenerative and plastic responses after spinal cord injury. Neuron 38(2):201–211

  44. Simpson JI, Soodak RE, Hess R (1979) The accessory optic system and its relation to the vestibulocerebellum. Prog Brain Res 50:715–724. doi:10.1016/S0079-6123(08)60868-7

  45. Soodak RE, Simpson JI (1988) The accessory optic system of rabbit. I. Basic visual response properties. J Neurophysiol 60(6):2037–2054

  46. Syken J, Grandpre T, Kanold PO, Shatz CJ (2006) PirB restricts ocular-dominance plasticity in visual cortex. Science 313(5794):1795–1800. doi:10.1126/science.1128232

  47. Tews B, Schonig K, Arzt ME, Clementi S, Rioult-Pedotti MS, Zemmar A, Berger SM, Schneider M, Enkel T, Weinmann O, Kasper H, Schwab ME, Bartsch D (2013) Synthetic microRNA-mediated downregulation of Nogo-A in transgenic rats reveals its role as regulator of synaptic plasticity and cognitive function. Proc Natl Acad Sci USA 110(16):6583–6588. doi:10.1073/pnas.1217665110

  48. Wada N, Funabiki K, Nakanishi S (2014) Role of granule-cell transmission in memory trace of cerebellum-dependent optokinetic motor learning. Proc Natl Acad Sci USA 111(14):5373–5378. doi:10.1073/pnas.1402546111

  49. Wiesel TN, Hubel DH (1963) Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 26:1003–1017

Download references

Acknowledgments

We thank Dr. Deniz Dalkara (Institut de la Vision, Paris) for providing us with the AAV2.GFP virus and Dr. Olivier Raineteau for allowing us to use his SPE-II confocal microscope. This work was supported by the Swiss National Science Foundation (SNF) grants no. 3100A0-1222527-2 and 31003A-149315-1 and the SNF National Center of Competence in Research ‘Neural Plasticity and Repair’ (to MES).

Author information

Correspondence to Anna Guzik-Kornacka or Vincent Pernet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1701 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guzik-Kornacka, A., van der Bourg, A., Vajda, F. et al. Nogo-A deletion increases the plasticity of the optokinetic response and changes retinal projection organization in the adult mouse visual system. Brain Struct Funct 221, 317–329 (2016). https://doi.org/10.1007/s00429-014-0909-3

Download citation

Keywords

  • Optokinetic response
  • Retinogeniculate projections
  • Monocular deprivation
  • Subcortical visual system
  • Plasticity