Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Resting-state connectivity and functional specialization in human medial parieto-occipital cortex


According to recent models of visuo-spatial processing, the medial parieto-occipital cortex is a crucial node of the dorsal visual stream. Evidence from neurophysiological studies in monkeys has indicated that the parieto-occipital sulcus (POS) contains three functionally and cytoarchitectonically distinct areas: the visual area V6 in the fundus of the POS, and the visuo-motor areas V6Av and V6Ad in a progressively dorsal and anterior location with respect to V6. Besides different topographical organization, cytoarchitectonics, and functional properties, these three monkey areas can also be distinguished based on their patterns of cortico-cortical connections. Thanks to wide-field retinotopic mapping, areas V6 and V6Av have been also mapped in the human brain. Here, using a combined approach of resting-state functional connectivity and task-evoked activity by fMRI, we identified a new region in the anterior POS showing a pattern of functional properties and cortical connections that suggests a homology with the monkey area V6Ad. In addition, we observed distinct patterns of cortical connections associated with the human V6 and V6Av which are remarkably consistent with those showed by the anatomical tracing studies in the corresponding monkey areas. Consistent with recent models on visuo-spatial processing, our findings demonstrate a gradient of functional specialization and cortical connections within the human POS, with more posterior regions primarily dedicated to the analysis of visual attributes useful for spatial navigation and more anterior regions primarily dedicated to analyses of spatial information relevant for goal-directed action.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. Astafiev SV, Shulman GL, Stanley CM, Snyder AZ, Van Essen DC, Corbetta M (2003) Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. J Neurosci 23(11):4689–4699 pii 23/11/4689

  2. Behzadi Y, Restom K, Liau J, Liu TT (2007) A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37(1):90–101. doi:10.1016/j.neuroimage.2007.04.042

  3. Beurze SM, de Lange FP, Toni I, Medendorp WP (2009) Spatial and effector processing in the human parietofrontal network for reaches and saccades. J Neurophysiol 101(6):3053–3062. doi:10.1152/jn.91194.2008

  4. Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann K, Zilles K, Fink GR (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29(1):287–296

  5. Cardin V, Smith AT (2010) Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. Cereb Cortex 20(8):1964–1973. doi:10.1093/cercor/bhp268

  6. Cardin V, Smith AT (2011) Sensitivity of human visual cortical area V6 to stereoscopic depth gradients associated with self-motion. J Neurophysiol 106(3):1240–1249. doi:10.1152/jn.01120.2010

  7. Chumbley J, Worsley K, Flandin G, Friston K (2010) Topological FDR for neuroimaging. Neuroimage 49(4):3057–3064. doi:10.1016/j.neuroimage.2009.10.090

  8. Connolly JD, Andersen RA, Goodale MA (2003) FMRI evidence for a ‘parietal reach region’ in the human brain. Exp Brain Res 153(2):140–145. doi:10.1007/s00221-003-1587-1

  9. Culham JC, Danckert SL, DeSouza JF, Gati JS, Menon RS, Goodale MA (2003) Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Exp Brain Res 153(2):180–189. doi:10.1007/s00221-003-1591-5

  10. Culham JC, Cavina-Pratesi C, Singhal A (2006) The role of parietal cortex in visuomotor control: what have we learned from neuroimaging? Neuropsychologia 44(13):2668–2684. doi:10.1016/j.neuropsychologia.2005.11.003

  11. Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392(6676):598–601. doi:10.1038/33402

  12. Fattori P, Gamberini M, Kutz DF, Galletti C (2001) ‘Arm-reaching’ neurons in the parietal area V6A of the macaque monkey. Eur J Neurosci 13(12):2309–2313

  13. Fattori P, Kutz DF, Breveglieri R, Marzocchi N, Galletti C (2005) Spatial tuning of reaching activity in the medial parieto-occipital cortex (area V6A) of macaque monkey. Eur J Neurosci 22(4):956–972. doi:10.1111/j.1460-9568.2005.04288.x

  14. Fattori P, Pitzalis S, Galletti C (2009a) The cortical visual area V6 in macaque and human brains. J Physiol Paris 103:88–97

  15. Fattori P, Breveglieri R, Marzocchi N, Filippini D, Bosco A, Galletti C (2009b) Hand orientation during reach-to-grasp movements modulates neuronal activity in the medial posterior parietal area V6A. J Neurosci 29(6):1928–1936. doi:10.1523/JNEUROSCI.4998-08.2009

  16. Filimon F, Nelson JD, Huang RS, Sereno MI (2009) Multiple parietal reach regions in humans: cortical representations for visual and proprioceptive feedback during on-line reaching. J Neurosci 29(9):2961–2971. doi:10.1523/JNEUROSCI.3211-08.2009

  17. Fischl B, Sereno MI, Tootell RB, Dale AM (1999) High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8(4):272–284. doi:10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4

  18. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9):700–711. doi:10.1038/nrn2201

  19. Friston KJ, Holmes A, Poline JB, Price CJ, Frith CD (1995) Detecting activations in PET and fMRI: levels of inference and power. Neuroimage 4:23–235

  20. Furlan M, Wann JP, Smith AT (2013) A representation of changing heading direction in human cortical areas pVIP and CSv. Cereb Cortex. doi:10.1093/cercor/bht132

  21. Galati G, Committeri G, Pitzalis S, Pelle G, Patria F, Fattori P, Galletti C (2011) Intentional signals during saccadic and reaching delays in the human posterior parietal cortex. Eur J Neurosci 34(11):1871–1885. doi:10.1111/j.1460-9568.2011.07885.x

  22. Galletti C, Fattori P, Battaglini PP, Shipp S, Zeki S (1996) Functional demarcation of a border between areas V6 and V6A in the superior parietal gyrus of the macaque monkey. Eur J Neurosci 8(1):30–52

  23. Galletti C, Fattori P, Kutz DF, Battaglini PP (1997) Arm movement-related neurons in the visual area V6A of the macaque superior parietal lobule. Eur J Neurosci 9(2):410–413

  24. Galletti C, Fattori P, Gamberini M, Kutz DF (1999a) The cortical visual area V6: brain location and visual topography. Eur J Neurosci 11(11):3922–3936

  25. Galletti C, Fattori P, Kutz DF, Gamberini M (1999b) Brain location and visual topography of cortical area V6A in the macaque monkey. Eur J Neurosci 11(2):575–582

  26. Galletti C, Gamberini M, Kutz DF, Fattori P, Luppino G, Matelli M (2001) The cortical connections of area V6: an occipito-parietal network processing visual information. Eur J Neurosci 13(8):1572–1588

  27. Galletti C, Kutz DF, Gamberini M, Breveglieri R, Fattori P (2003) Role of the medial parieto-occipital cortex in the control of reaching and grasping movements. Exp Brain Res 153(2):158–170. doi:10.1007/s00221-003-1589-z

  28. Gamberini M, Passarelli L, Fattori P, Zucchelli M, Bakola S, Luppino G, Galletti C (2009) Cortical connections of the visuomotor parietooccipital area V6Ad of the macaque monkey. J Comp Neurol 513(6):622–642. doi:10.1002/cne.21980

  29. Gamberini M, Galletti C, Bosco A, Breveglieri R, Fattori P (2011) Is the medial posterior parietal area V6A a single functional area? J Neurosci 31(13):5145–5157. doi:10.1523/JNEUROSCI.5489-10.2011

  30. Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15(1):20–25. doi:10.1016/0166-2236(92)90344-8

  31. Hasson U, Harel M, Levy I, Malach R (2003) Large-scale mirror-symmetry organization of human occipito-temporal object areas. Neuron 37(6):1027–1041

  32. Kolster H, Peeters R, Orban GA (2010) The retinotopic organization of the human middle temporal area MT/V5 and its cortical neighbors. J Neurosci 30(29):9801–9820. doi:10.1523/JNEUROSCI.2069-10.2010

  33. Konen CS, Mruczek RE, Montoya JL, Kastner S (2013) Functional organization of human posterior parietal cortex: grasping- and reaching-related activations relative to topographically organized cortex. J Neurophysiol 109(12):2897–2908. doi:10.1152/jn.00657.2012

  34. Kravitz DJ, Saleem KS, Baker CI, Mishkin M (2011) A new neural framework for visuospatial processing. Nat Rev Neurosci 12(4):217–230. doi:10.1038/nrn3008

  35. Kutz DF, Fattori P, Gamberini M, Breveglieri R, Galletti C (2003) Early- and late-responding cells to saccadic eye movements in the cortical area V6A of macaque monkey. Exp Brain Res 149(1):83–95. doi:10.1007/s00221-002-1337-9

  36. Levy I, Hasson U, Avidan G, Hendler T, Malach R (2001) Center-periphery organization of human object areas. Nat Neurosci 4(5):533–539. doi:10.1038/87490

  37. Luppino G, Ben Hamed S, Gamberini M, Matelli M, Galletti C (2005) Occipital (V6) and parietal (V6A) areas in the anterior wall of the parieto-occipital sulcus of the macaque: a cytoarchitectonic study. Eur J Neurosci 21(11):3056–3076. doi:10.1111/j.1460-9568.2005.04149

  38. Malach R, Levy I, Hasson U (2002) The topography of high-order human object areas. Trends Cogn Sci 6(4):176–184 pii S1364661302018703

  39. Margulies DS, Vincent JL, Kelly C, Lohmann G, Uddin LQ, Biswal BB, Villringer A, Castellanos FX, Milham MP, Petrides M (2009) Precuneus shares intrinsic functional architecture in humans and monkeys. Proc Natl Acad Sci USA 106(47):20069–20074. doi:10.1073/pnas.0905314106

  40. Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J (1995) A probabilistic atlas of the human brain: theory and rationale for its development. International Consortium for Brain Mapping (ICBM). Neuroimage 2(2):89–101 pii S1053811985710129

  41. Morrone MC, Tosetti M, Montanaro D, Fiorentini A, Cioni G, Burr DC (2000) A cortical area that responds specifically to optic flow, revealed by fMRI. Nat Neurosci 3(12):1322–1328. doi:10.1038/81860

  42. Orban GA, Vanduffel W (2004) Functional mapping of motion regions. In: Werner LMCJS (ed) The visual neuroscience, vol 2. MIT Press, Cambridge, pp 1229–1246

  43. Passarelli L, Rosa MG, Gamberini M, Bakola S, Burman KJ, Fattori P, Galletti C (2011) Cortical connections of area V6Av in the macaque: a visual-input node to the eye/hand coordination system. J Neurosci 31(5):1790–1801. doi:10.1523/JNEUROSCI.4784-10.2011

  44. Pitzalis S, Galletti C, Huang RS, Patria F, Committeri G, Galati G, Fattori P, Sereno MI (2006) Wide-field retinotopy defines human cortical visual area v6. J Neurosci 26(30):7962–7973. doi:10.1523/JNEUROSCI.0178-06.2006

  45. Pitzalis S, Sereno MI, Committeri G, Fattori P, Galati G, Patria F, Galletti C (2010) Human v6: the medial motion area. Cereb Cortex 20(2):411–424. doi:10.1093/cercor/bhp112

  46. Pitzalis S, Bozzacchi C, Bultrini A, Fattori P, Galletti C, Di Russo F (2013a) Parallel motion signals to the medial and lateral motion areas V6 and MT+. Neuroimage 67:89–100. doi:10.1016/j.neuroimage.2012.11.022

  47. Pitzalis S, Fattori P, Galletti C (2013b) The functional role of the medial motion area V6. Front Behav Neurosci 6(91):1–13. doi:10.3389/fnbeh.2012.00091

  48. Pitzalis S, Sdoia S, Bultrini A, Committeri G, Di Russo F, Fattori P, Galletti C, Galati G (2013c) Selectivity to translational egomotion in human brain motion areas. PLoS One 8(4):e60241. doi:10.1371/journal.pone.0060241PONE-D-12-38095

  49. Pitzalis S, Sereno MI, Committeri G, Fattori P, Galati G, Tosoni A, Galletti C (2013d) The human homologue of macaque area V6A. NeuroImage 82:517–530

  50. Power JD, Barnes KA, Snyder AZ, Schlagger BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59:2142–2154. doi:10.1016/j.neuroimage.2011.20.018

  51. Power JD, Mitra A, Lauman TO, Snyder AZ, Schlaggar BL, Petersen SE (2014) Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84:320–341. doi:10.1016/j.neuroimage.2013.08.048

  52. Rizzolatti G, Matelli M (2003) Two different streams form the dorsal visual system: anatomy and functions. Exp Brain Res 153(2):146–157. doi:10.1007/s00221-003-1588-0

  53. Schluppeck D, Glimcher P, Heeger DJ (2005) Topographic organization for delayed saccades in human posterior parietal cortex. J Neurophysiol 94(2):1372–1384. doi:10.1152/jn.01290.2004

  54. Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294(5545):1350–1354. doi:10.1126/science.1063695294/5545/1350

  55. Shipp S, Zeki S (1989) The organization of connections between areas V5 and V1 in Macaque Monkey Visual Cortex. Eur J Neurosci 1(4):309–332 pii ejn_01040309

  56. Silver MA, Ress D, Heeger DJ (2005) Topographic maps of visual spatial attention in human parietal cortex. J Neurophysiol 94(2):1358–1371. doi:10.1152/jn.01316.2004

  57. Sulpizio V, Committeri G, Lambrey S, Berthoz A, Galati G (2013) Selective role of lingual/parahippocampal gyrus and retrosplenial complex in spatial memory across viewpoint changes relative to the environmental reference frame. Behav Brain Res 242:62–75. doi:10.1016/j.bbr.2012.12.031

  58. Swisher JD, Halko MA, Merabet LB, McMains SA, Somers DC (2007) Visual topography of human intraparietal sulcus. J Neurosci 27(20):5326–5337. doi:10.1523/JNEUROSCI.0991-07.2007

  59. Tootell RB, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, Rosen BR, Belliveau JW (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15(4):3215–3230

  60. Tosoni A, Galati G, Romani GL, Corbetta M (2008) Sensory-motor mechanisms in human parietal cortex underlie arbitrary visual decisions. Nat Neurosci 11(12):1446–1453. doi:10.1038/nn.2221

  61. Uddin LQ, Supekar K, Amin H, Rykhlevskaia E, Nguyen DA, Greicius MD, Menon V (2010) Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. Cereb Cortex 20(11):2636–2646. doi:10.1093/cercor/bhq011

  62. Ungerleider LG, Mishkin M (1982) Two cortical visual system. Analysis of visual behavior. MIT, Cambridge

  63. Van Essen DC, Glasser MF, Dierker DL, Harwell J, Coalson T (2011) Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb Cortex 22(10):2241–2262. doi:10.1093/cercor/bhr291

  64. von Pfostl V, Stenbacka L, Vanni S, Parkkonen L, Galletti C, Fattori P (2009) Motion sensitivity of human V6: a magnetoencephalography study. Neuroimage 45(4):1253–1263. doi:10.1016/j.neuroimage.2008.12.058

  65. Wall MB, Smith AT (2008) The representation of egomotion in the human brain. Curr Biol 18(3):191–194. doi:10.1016/j.cub.2007.12.053

  66. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zollei L, Polimeni JR, Fischl B, Liu H, Buckner RL (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106(3):1125–1165. doi:10.1152/jn.00338.2011

  67. Zeki S, Watson JD, Lueck CJ, Friston KJ, Kennard C, Frackowiak RS (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 11(3):641–649

Download references


This work was supported by RC block grants from Italian Ministry of Health—Fondazione Santa Lucia to GG and SP and by FP7-ICT-217077-EYESHOTS from MIUR and Fondazione del Monte di Bologna e Ravenna to CG.

Author information

Correspondence to Annalisa Tosoni.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tosoni, A., Pitzalis, S., Committeri, G. et al. Resting-state connectivity and functional specialization in human medial parieto-occipital cortex. Brain Struct Funct 220, 3307–3321 (2015).

Download citation


  • Functional connectivity MRI
  • Visual area V6
  • Visuo-motor area V6A
  • V6Av–V6Ad