Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Myosin II regulates actin rearrangement-related structural synaptic plasticity during conditioned taste aversion memory extinction


Similar to memory formation, memory extinction is also a new learning process that requires synaptic plasticity. Actin rearrangement is fundamental for synaptic plasticity, however, whether actin rearrangement in the infralimbic cortex (IL) plays a role in memory extinction, as well as the mechanisms underlying it, remains unclear. Here, using a conditioned taste aversion (CTA) paradigm, we demonstrated increased synaptic density and actin rearrangement in the IL during the extinction of CTA. Targeted infusion of an actin rearrangement inhibitor, cytochalasin D, into the IL impaired memory extinction and de novo synapse formation. Notably, we also found increased myosin II phosphorylation in the IL during the extinction of CTA. Microinfusion of a specific inhibitor of the myosin II ATPase, blebbistatin (Blebb), into the IL impaired memory extinction as well as the related actin rearrangement and changes in synaptic density. Moreover, the extinction deficit and the reduction of synaptic density induced by Blebb could be rescued by the actin polymerization stabilizer jasplakinolide (Jasp), suggesting that myosin II acts via actin filament polymerization to stabilize synaptic plasticity during the extinction of CTA. Taken together, we conclude that myosin II may regulate the plasticity of actin-related synaptic structure during memory extinction. Our studies provide a molecular mechanism for understanding the plasticity of actin rearrangement-associated synaptic structure during memory extinction.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Alonso-Nanclares L, Gonzalez-Soriano J, Rodriguez JR, DeFelipe J (2008) Gender differences in human cortical synaptic density. Proc Natl Acad Sci USA 105(38):14615–14619. doi:10.1073/pnas.0803652105

  2. Andersen P, Soleng AF (1998) Long-term potentiation and spatial training are both associated with the generation of new excitatory synapses. Brain Res Brain Res Rev 26(2–3):353–359

  3. Beaulieu C, Colonnier M (1985) A laminar analysis of the number of round-asymmetrical and flat-symmetrical synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat. J Comp Neurol 231(2):180–189. doi:10.1002/cne.902310206

  4. Berman DE, Dudai Y (2001) Memory extinction, learning anew, and learning the new: dissociations in the molecular machinery of learning in cortex. Science 291(5512):2417–2419. doi:10.1126/science.1058165

  5. Berman DE, Hazvi S, Stehberg J, Bahar A, Dudai Y (2003) Conflicting processes in the extinction of conditioned taste aversion: behavioral and molecular aspects of latency, apparent stagnation, and spontaneous recovery. Learn Mem 10(1):16–25. doi:10.1101/lm.53703

  6. Bi AL, Wang Y, Li BQ, Wang QQ, Ma L, Yu H, Zhao L, Chen ZY (2010) Region-specific involvement of actin rearrangement-related synaptic structure alterations in conditioned taste aversion memory. Learn Mem 17(9):420–427. doi:10.1101/lm.1772310

  7. Bubb MR, Spector I, Beyer BB, Fosen KM (2000) Effects of jasplakinolide on the kinetics of actin polymerization. An explanation for certain in vivo observations. J Biol Chem 275(7):5163–5170

  8. Burgos-Robles A, Vidal-Gonzalez I, Santini E, Quirk GJ (2007) Consolidation of fear extinction requires NMDA receptor-dependent bursting in the ventromedial prefrontal cortex. Neuron 53(6):871–880. doi:10.1016/j.neuron.2007.02.021

  9. Chodniewicz D, Alteraifi AM, Zhelev DV (2004) Experimental evidence for the limiting role of enzymatic reactions in chemoattractant-induced pseudopod extension in human neutrophils. J Biol Chem 279(23):24460–24466. doi:10.1074/jbc.M312764200

  10. Cui Z, Lindl KA, Mei B, Zhang S, Tsien JZ (2005) Requirement of NMDA receptor reactivation for consolidation and storage of nondeclarative taste memory revealed by inducible NR1 knockout. Eur J Neurosci 22(3):755–763. doi:10.1111/j.1460-9568.2005.04257.x

  11. Even-Faitelson L, Rosenberg M, Ravid S (2005) PAK1 regulates myosin II-B phosphorylation, filament assembly, localization and cell chemotaxis. Cell Signal 17(9):1137–1148. doi:10.1016/j.cellsig.2004.12.015

  12. Fischer A, Sananbenesi F, Schrick C, Spiess J, Radulovic J (2004) Distinct roles of hippocampal de novo protein synthesis and actin rearrangement in extinction of contextual fear. J Neurosci 24(8):1962–1966. doi:10.1523/JNEUROSCI.5112-03.2004

  13. Foa EB (2000) Psychosocial treatment of posttraumatic stress disorder. J Clin Psychiatry 61 Suppl 5:43–48 (discussion 49–51)

  14. Frielingsdorf H, Bath KG, Soliman F, Difede J, Casey BJ, Lee FS (2010) Variant brain-derived neurotrophic factor Val66Met endophenotypes: implications for posttraumatic stress disorder. Ann N Y Acad Sci 1208:150–157. doi:10.1111/j.1749-6632.2010.05722.x

  15. Fukazawa Y, Saitoh Y, Ozawa F, Ohta Y, Mizuno K, Inokuchi K (2003) Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38(3):447–460 (pii S089662730300206X)

  16. Gavin CF, Rubio MD, Young E, Miller C, Rumbaugh G (2012) Myosin II motor activity in the lateral amygdala is required for fear memory consolidation. Learn Mem 19(1):9–14. doi:10.1101/lm.024042.111

  17. Geinisman Y (2000) Structural synaptic modifications associated with hippocampal LTP and behavioral learning. Cereb Cortex 10(10):952–962

  18. Geinisman Y, Berry RW, Disterhoft JF, Power JM, Van der Zee EA (2001) Associative learning elicits the formation of multiple-synapse boutons. J Neurosci 21(15):5568–5573 (pii 21/15/5568)

  19. Hodges JL, Newell-Litwa K, Asmussen H, Vicente-Manzanares M, Horwitz AR (2011) Myosin IIb activity and phosphorylation status determines dendritic spine and post-synaptic density morphology. PLoS ONE 6(8):e24149. doi:10.1371/journal.pone.0024149

  20. Hou YY, Lu B, Li M, Liu Y, Chen J, Chi ZQ, Liu JG (2009) Involvement of actin rearrangements within the amygdala and the dorsal hippocampus in aversive memories of drug withdrawal in acute morphine-dependent rats. J Neurosci 29(39):12244–12254. doi:10.1523/JNEUROSCI.1970-09.2009

  21. Houpt TA, Philopena JM, Joh TH, Smith GP (1996) c-Fos induction in the rat nucleus of the solitary tract correlates with the retention and forgetting of a conditioned taste aversion. Learn Mem 3(1):25–30

  22. Kovacs M, Toth J, Hetenyi C, Malnasi-Csizmadia A, Sellers JR (2004) Mechanism of blebbistatin inhibition of myosin II. J Biol Chem 279(34):35557–35563. doi:10.1074/jbc.M405319200

  23. Lin B, Kramar EA, Bi X, Brucher FA, Gall CM, Lynch G (2005) Theta stimulation polymerizes actin in dendritic spines of hippocampus. J Neurosci 25(8):2062–2069. doi:10.1523/JNEUROSCI.4283-04.2005

  24. Mantzur L, Joels G, Lamprecht R (2009) Actin polymerization in lateral amygdala is essential for fear memory formation. Neurobiol Learn Mem 91(1):85–88. doi:10.1016/j.nlm.2008.09.001

  25. Mickley GA, Kenmuir CL, Yocom AM, Wellman JA, Biada JM (2005) A role for prefrontal cortex in the extinction of a conditioned taste aversion. Brain Res 1051(1–2):176–182. doi:10.1016/j.brainres.2005.05.033

  26. Milad MR, Quirk GJ (2002) Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420(6911):70–74. doi:10.1038/nature01138

  27. Paxinos G WC (1996) The rat brain in stereotaxic coordinates. Academic Press, New York

  28. Quirk GJ, Garcia R, Gonzalez-Lima F (2006) Prefrontal mechanisms in extinction of conditioned fear. Biol Psychiatry 60(4):337–343. doi:10.1016/j.biopsych.2006.03.010

  29. Rex CS, Gavin CF, Rubio MD, Kramar EA, Chen LY, Jia Y, Huganir RL, Muzyczka N, Gall CM, Miller CA, Lynch G, Rumbaugh G (2010) Myosin IIb regulates actin dynamics during synaptic plasticity and memory formation. Neuron 67(4):603–617. doi:10.1016/j.neuron.2010.07.016

  30. Rosenblum K, Meiri N, Dudai Y (1993) Taste memory: the role of protein synthesis in gustatory cortex. Behav Neural Biol 59(1):49–56

  31. Rothbaum BO, Davis M (2003) Applying learning principles to the treatment of post-trauma reactions. Ann N Y Acad Sci 1008:112–121

  32. Rubio MD, Johnson R, Miller CA, Huganir RL, Rumbaugh G (2011) Regulation of synapse structure and function by distinct myosin II motors. J Neurosci 31(4):1448–1460. doi:10.1523/JNEUROSCI.3294-10.2011

  33. Ryu J, Liu L, Wong TP, Wu DC, Burette A, Weinberg R, Wang YT, Sheng M (2006) A critical role for myosin IIb in dendritic spine morphology and synaptic function. Neuron 49(2):175–182. doi:10.1016/j.neuron.2005.12.017

  34. Santini E, Ge H, Ren K, Pena de Ortiz S, Quirk GJ (2004) Consolidation of fear extinction requires protein synthesis in the medial prefrontal cortex. J Neurosci 24(25):5704–5710. doi:10.1523/JNEUROSCI.0786-04.2004

  35. Soliman F, Glatt CE, Bath KG, Levita L, Jones RM, Pattwell SS, Jing D, Tottenham N, Amso D, Somerville LH, Voss HU, Glover G, Ballon DJ, Liston C, Teslovich T, Van Kempen T, Lee FS, Casey BJ (2010) A genetic variant BDNF polymorphism alters extinction learning in both mouse and human. Science 327(5967):863–866. doi:10.1126/science.1181886

  36. Sotres-Bayon F, Diaz-Mataix L, Bush DE, LeDoux JE (2009) Dissociable roles for the ventromedial prefrontal cortex and amygdala in fear extinction: NR2B contribution. Cereb Cortex 19(2):474–482. doi:10.1093/cercor/bhn099

  37. Toda S, Alguacil LF, Kalivas PW (2003) Repeated cocaine administration changes the function and subcellular distribution of adenosine A1 receptor in the rat nucleus accumbens. J Neurochem 87(6):1478–1484 pii: 2121

  38. Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR (2009) Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10(11):778–790. doi:10.1038/nrm2786

  39. Yu H, Wang Y, Pattwell S, Jing D, Liu T, Zhang Y, Bath KG, Lee FS, Chen ZY (2009) Variant BDNF Val66Met polymorphism affects extinction of conditioned aversive memory. J Neurosci 29(13):4056–4064. doi:10.1523/JNEUROSCI.5539-08.2009

  40. Zhou Q, Homma KJ, Poo MM (2004) Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44(5):749–757. doi:10.1016/j.neuron.2004.11.011

  41. Zito K, Knott G, Shepherd GM, Shenolikar S, Svoboda K (2004) Induction of spine growth and synapse formation by regulation of the spine actin cytoskeleton. Neuron 44(2):321–334. doi:10.1016/j.neuron.2004.09.022

Download references


This study was supported by the National 973 Basic Research Program of China (No. 2012CB911000), National Natural Science Foundation of China (No. 31130026, 31070991), the State Program of National Natural Science Foundation of China for Innovative Research Group (No. 81021001), the China Postdoctoral Science Foundation ( No. 2011M501124 ) and the Independent Innovation Foundation of Shandong University (IIFSDU).

Author information

Correspondence to Zhe-Yu Chen.

Additional information

Ai-Ling Bi and Yue Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1 Three-step localization method. (a) Anatomical localization. The IL tissue used for EM analysis was divided into three 500 μm-thick slices and was embedded. (b) Histological localization. HE staining was used to locate the 2 μm-thick semi-thin sections. (c) to (f) show the ultrastructural localization. (c) 7-9 pieces of serial ultrathin sections were collected on a single-slot grid. (d) Rectangles represent visual fields at 5000× magnification per ultrathin section. (e) A representative visual field at 5000× magnification. (f) Identification of the “d” used in the synaptic analysis. (PPT 698 kb)

Supplemental Fig. 2 Representative photographs show the percentage of synaptophysin (SYN) positive area in the IL at 2 hr and 8 hr after extinction training on extinction day 4. (a), (b), (c), (d), and (e) represents naive, No Ext (2 hr), Ext (2 hr), No Ext (8 hr), and Ext (8 hr) group, respectively. (f) Quantification of synaptophysin immunoreactivity (SYN-IR) area percentage in the Naive, No Ext (2 hr), Ext (2 hr), No Ext (8 hr) and Ext (8 hr) groups (*P < 0.05, **P < 0.01, compared with the corresponding No Ext group). (PPT 3166 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bi, A., Wang, Y., Zhang, S. et al. Myosin II regulates actin rearrangement-related structural synaptic plasticity during conditioned taste aversion memory extinction. Brain Struct Funct 220, 813–825 (2015).

Download citation


  • Actin rearrangement
  • Conditioned taste aversion
  • Extinction
  • Myosin II
  • Synapse