Advertisement

Invited review—next-generation sequencing: a modern tool in cytopathology

  • Sinchita Roy-Chowdhuri
  • Pasquale Pisapia
  • Manuel Salto-Tellez
  • Spasenija Savic
  • Mariantonia Nacchio
  • Dario de Biase
  • Giovanni Tallini
  • Giancarlo TronconeEmail author
  • Fernando Schmitt
Review and Perspectives
  • 8 Downloads

Abstract

In recent years, cytopathology has established itself as an independent diagnostic modality to guide clinical management in many different settings. The application of molecular techniques to cytological samples to identify prognostic and predictive biomarkers has played a crucial role in achieving this goal. While earlier studies have demonstrated that single biomarker testing is feasible on cytological samples, currently, this provides only limited and increasingly insufficient information in an era where an increasing number of biomarkers are required to guide patient care. More recently, multigene mutational assays, such as next-generation sequencing (NGS), have gained popularity because of their ability to provide genomic information on multiple genes. The cytopathologist plays a key role in ensuring success of NGS in cytological samples by influencing the pre-analytical steps, optimizing preparation types and adequacy requirement in terms of cellularity and tumor fraction, and ensuring optimal nucleic acid extraction for DNA input requirements. General principles of the role and potential of NGS in molecular cytopathology in the universal healthcare (UHC) European environment and examples of principal clinical applications were discussed in the workshop that took place at the 30th European Congress of Pathology in Bilbao, European Society of Pathology, whose content is here comprehensively described.

Keywords

Molecular cytopathology Next-generation sequencing Fine-needle aspiration Cell block Direct smears Liquid-based cytology 

Notes

Author contribution

Sinchita Roy-Chowdhuri, Manuel Salto-Tellez, Spasenija Savic, Giovanni Tallini, Giancarlo Troncone, and Fernando Schmitt conceived the review; Sinchita Roy-Chowdhuri, Pasquale Pisapi, Manuel Salto-Tellez, Spasenija Savic, Mariantonia Nacchio, Dario de Biase, Giovanni Tallini, Giancarlo Troncone, and Fernando Schmitt wrote the manuscript and approved the final version.

Compliance with ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this review, formal consent is not required.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Salto-Tellez M (2015) Diagnostic molecular cytopathology - a further decade of progress. Cytopathology 26:269–270CrossRefPubMedGoogle Scholar
  2. 2.
    Bellevicine C, Malapelle U, Vigliar E, Pisapia P, Vita G, Troncone G (2017) How to prepare cytological samples for molecular testing. J Clin Pathol 70:819–826CrossRefPubMedGoogle Scholar
  3. 3.
    Roy-Chowdhuri S, Stewart J (2016) Preanalytic variables in cytology: lessons learned from next-generation sequencing-the MD Anderson experience. Arch Pathol Lab Med 140:1191–1199CrossRefGoogle Scholar
  4. 4.
    Killian JK, Walker RL, Suuriniemi M, Jones L, Scurci S, Singh P, Cornelison R, Harmon S, Boisvert N, Zhu J, Wang Y, Bilke S, Davis S, Giaccone G, Smith WI Jr, Meltzer PS (2010) Archival fine-needle aspiration cytopathology (FNAC) samples: untapped resource for clinical molecular profiling. J Mol Diagn 12:739–745CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rekhtman N, Roy-Chowdhuri S (2016) Cytology specimens: a goldmine for molecular testing. Arch Pathol Lab Med 140:1189–1190CrossRefPubMedGoogle Scholar
  6. 6.
    Idowu MO (2013) Epidermal growth factor receptor in lung cancer: the amazing interplay of molecular testing and cytopathology. Cancer Cytopathol 121:540–543CrossRefPubMedGoogle Scholar
  7. 7.
    Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker EH, Colasacco C, Dacic S, Hirsch FR, Kerr K, Kwiatkowski DJ, Ladanyi M, Nowak JA, Sholl L, Temple-Smolkin R, Solomon B, Souter LH, Thunnissen E, Tsao MS, Ventura CB, Wynes MW, Yatabe Y (2018) Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch Pathol Lab Med 142:321–346CrossRefPubMedGoogle Scholar
  8. 8.
    Bellevicine C, Vita GD, Malapelle U, Troncone G (2013) Applications and limitations of oncogene mutation testing in clinical cytopathology. Semin Diagn Pathol 30:284–297CrossRefPubMedGoogle Scholar
  9. 9.
    Roy-Chowdhuri S, Chow CW, Kane MK, Yao H, Wistuba II, Krishnamurthy S, Stewart J, Staerkel G (2016) Optimizing the DNA yield for molecular analysis from cytologic preparations. Cancer Cytopathol 124:254–260CrossRefPubMedGoogle Scholar
  10. 10.
    Roy-Chowdhuri S, Goswami RS, Chen H, Patel KP, Routbort MJ, Singh RR, Broaddus RR, Barkoh BA, Manekia J, Yao H, Medeiros LJ, Staerkel G, Luthra R, Stewart J (2015) Factors affecting the success of next-generation sequencing in cytology specimens. Cancer Cytopathol 123:659–668CrossRefPubMedGoogle Scholar
  11. 11.
    Roy-Chowdhuri S, Chen H, Singh RR, Krishnamurthy S, Patel KP, Routbort MJ, Manekia J, Barkoh BA, Yao H, Sabir S, Broaddus RR, Medeiros LJ, Staerkel G, Stewart J, Luthra R (2017) Concurrent fine needle aspirations and core needle biopsies: a comparative study of substrates for next-generation sequencing in solid organ malignancies. Mod Pathol 30:499–508CrossRefPubMedGoogle Scholar
  12. 12.
    Guseva NV, Jaber O, Stence AA, Sompallae K, Bashir A, Sompallae R, Bossler AD, Jensen CS, Ma D (2018) Simultaneous detection of single-nucleotide variant, deletion/insertion, and fusion in lung and thyroid carcinoma using cytology specimen and an RNA-based next-generation sequencing assay. Cancer Cytopathol 126:158–169CrossRefPubMedGoogle Scholar
  13. 13.
    Velizheva NP, Rechsteiner MP, Wong CE, Zhong Q, Rössle M, Bode B, Moch H, Soltermann A, Wild PJ, Tischler V (2017) Cytology smears as excellent starting material for next-generation sequencing-based molecular testing of patients with adenocarcinoma of the lung. Cancer Cytopathol 125:30–40CrossRefPubMedGoogle Scholar
  14. 14.
    Padmanabhan V, Steinmetz HB, Rizzo EJ, Erskine AJ, Fairbank TL, de Abreu FB, Tsongalis GJ, Tafe LJ (2017) Improving adequacy of small biopsy and fine-needle aspiration specimens for molecular testing by next-generation sequencing in patients with lung cancer: a quality improvement study at Dartmouth-Hitchcock Medical Center. Arch Pathol Lab Med 141:402–409CrossRefPubMedGoogle Scholar
  15. 15.
    Tian SK, Killian JK, Rekhtman N, Benayed R, Middha S, Ladanyi M, Lin O, Arcila ME (2016) Optimizing workflows and processing of cytologic samples for comprehensive analysis by next-generation sequencing: memorial Sloan Kettering Cancer center experience. Arch Pathol Lab Med 140:1200–1205CrossRefGoogle Scholar
  16. 16.
    Salto-Tellez M (2018) More than a decade of molecular diagnostic cytopathology leading diagnostic and therapeutic decision-making. Arch Pathol Lab Med 142:443–445CrossRefPubMedGoogle Scholar
  17. 17.
    Vigliar E, Malapelle U, de Luca C, Bellevicine C, Troncone G (2015) Challenges and opportunities of next-generation sequencing: a cytopathologist’s perspective. Cytopathology 26:271–283CrossRefPubMedGoogle Scholar
  18. 18.
    Dejmek A, Zendehrokh N, Tomaszewska M, Edsjö A (2013) Preparation of DNA from cytological material: effects of fixation, staining, and mounting medium on DNA yield and quality. Cancer Cytopathol 121:344–353CrossRefPubMedGoogle Scholar
  19. 19.
    Gailey MP, Stence AA, Jensen CS, Ma D (2015) Multiplatform comparison of molecular oncology tests performed on cytology specimens and formalin-fixed, paraffin-embedded tissue. Cancer Cytopathol 123:30–39CrossRefPubMedGoogle Scholar
  20. 20.
    Roy-Chowdhuri S, Mehrotra M, Bolivar AM, Kanagal-Shamanna R, Barkoh BA, Hannigan B, Zalles S, Ye W, Duose D, Broaddus R, Staerkel G, Wistuba I, Medeiros LJ, Luthra R (2018) Salvaging the supernatant: next generation cytopathology for solid tumor mutation profiling. Mod Pathol 31:1036–1045CrossRefPubMedGoogle Scholar
  21. 21.
    Kanagal-Shamanna R, Portier BP, Singh RR, Routbort MJ, Aldape KD, Handal BA, Rahimi H, Reddy NG, Barkoh BA, Mishra BM, Paladugu AV, Manekia JH, Kalhor N, Chowdhuri SR, Staerkel GA, Medeiros LJ, Luthra R, Patel KP (2014) Next-generation sequencing-based multi-gene mutation profiling of solid tumors using fine needle aspiration samples: promises and challenges for routine clinical diagnostics. Mod Pathol 27:314–327CrossRefPubMedGoogle Scholar
  22. 22.
    Hynes SO, Pang B, James JA, Maxwell P, Salto-Tellez M (2017) Tissue-based next-generation sequencing: application in a universal healthcare system. Br J Cancer F116:553–560CrossRefGoogle Scholar
  23. 23.
    van der Velden DL, van Herpen CML, van Laarhoven HWM, Smit EF, Groen HJM, Willems SM, Nederlof PM, Langenberg MHG, Cuppen E, Sleijfer S, Steeghs N, Voest EE (2017) Molecular tumor boards: current practice and future needs. Ann Oncol 28:3070–3075CrossRefPubMedGoogle Scholar
  24. 24.
    Kron F, Kostenko A, Scheffler M, Müller D, Glossmann JP, Fischer R, Michels S, Nogova L, Hallek M, Zander T, Wolf J (2017) Economic burden of clinical trials in lung cancer in a German Comprehensive Cancer Center. Lung Cancer 108:134–139CrossRefPubMedGoogle Scholar
  25. 25.
    Jennings LJ, Arcila ME, Corless C, Kamel-Reid S, Lubin IM, Pfeifer J, Temple-Smolkin RL, Voelkerding KV, Nikiforova MN (2017) Guidelines for validation of next-generation sequencing-based oncology panels: a joint consensus recommendation of the Association for Molecular Pathology and College of American Pathologists. J Mol Diagn 19:341–365CrossRefPubMedGoogle Scholar
  26. 26.
    Maxwell P, Hynes SO, Fuchs M, Craig S, McGready C, McLean F, McQuaid S, James J, Salto-Tellez M (2018) Practical guide for the comparison of two next-generation sequencing systems for solid tumour analysis in a universal healthcare system. J Clin PatholGoogle Scholar
  27. 27.
    Suh JH, Johnson A, Albacker L, Wang K, Chmielecki J, Frampton G, Gay L, Elvin JA, Vergilio JA, Ali S, Miller VA, Stephens PJ, Ross JS (2016) Comprehensive genomic profiling facilitates implementation of the National Comprehensive Cancer Network Guidelines for Lung Cancer biomarker testing and identifies patients who may benefit from enrollment in mechanism-driven clinical trials. Oncologist 21:684–691CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Turner SR, Buonocore D, Desmeules P, Rekhtman N, Dogan S, Lin O, Arcila ME, Jones DR, Huang J (2018) Feasibility of endobronchial ultrasound transbronchial needle aspiration for massively parallel next-generation sequencing in thoracic cancer patients. Lung Cancer 119:85–90CrossRefPubMedGoogle Scholar
  29. 29.
    Malapelle U, Mayo de Las-Casas C, Rocco D, Garzon M, Pisapia P, Jordana-Ariza N, Russo M, Sgariglia R, De Luca C, Pepe F, Martinez-Bueno A, Morales-Espinosa D, González-Cao M, Karachaliou N, Viteri Ramirez S, Bellevicine C, Molina-Vila MA, Rosell R, Troncone G (2017) Development of a gene panel for next-generation sequencing of clinically relevant mutations in cell-free DNA from cancer patients. Br J Cancer 116:802–810CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Karnes HE, Duncavage EJ, Bernadt CT (2014) Targeted next-generation sequencing using fine-needle aspirates from adenocarcinomas of the lung. Cancer Cytopathol 122:104–113CrossRefPubMedGoogle Scholar
  31. 31.
    Pisapia P, Pepe F, Smeraglio R, Russo M, Rocco D, Sgariglia R, Nacchio M, De Luca C, Vigliar E, Bellevicine C, Troncone G, Malapelle U (2017) Cell free DNA analysis by SiRe(®) next generation sequencing panel in non-small cell lung cancer patients: focus on basal setting. J Thorac Dis 9(Suppl 13):S1383–S1390CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Pepe F, De Luca C, Smeraglio R, Pisapia P, Sgariglia R, Nacchio M, Russo M, Serra N, Rocco D, Battiloro C, Ambrosio F, Gragnano G, Vigliar E, Bellevicine C, Troncone G, Malapelle U (2019) Performance analysis of SiRe next-generation sequencing panel in diagnostic setting: focus on NSCLC routine samples. J Clin Pathol 72:38–45CrossRefPubMedGoogle Scholar
  33. 33.
    Malapelle U, Mayo-de-Las-Casas C, Molina-Vila MA, Rosell R, Savic S, Bihl M, Bubendorf L, Salto-Tellez M, de Biase D, Tallini G, Hwang DH, Sholl LM, Luthra R, Weynand B, Vander Borght S, Missiaglia E, Bongiovanni M, Stieber D, Vielh P, Schmitt F, Rappa A, Barberis M, Pepe F, Pisapia P, Serra N, Vigliar E, Bellevicine C, Fassan M, Rugge M, de Andrea CE, Lozano MD, Basolo F, Fontanini G, Nikiforov YE, Kamel-Reid S, da Cunha SG, Nikiforova MN, Roy-Chowdhuri S, Troncone G, Molecular Cytopathology Meeting Group (2017) Consistency and reproducibility of next-generation sequencing and other multigene mutational assays: a worldwide ring trial study on quantitative cytological molecular reference specimens. Cancer Cytopathol 125:615–626CrossRefPubMedGoogle Scholar
  34. 34.
    Jain D, Roy-Chowdhuri S (2018) Molecular pathology of lung cancer cytology specimens: a concise review. Arch Pathol Lab Med 142:1127–1133CrossRefPubMedGoogle Scholar
  35. 35.
    Ettinger DS, Aisner DL, Wood DE, Akerley W, Bauman J, Chang JY, Chirieac LR, D’Amico TA, Dilling TJ, Dobelbower M, Govindan R, Gubens MA, Hennon M, Horn L, Lackner RP, Lanuti M, Leal TA, Lilenbaum R, Lin J, Loo BW Jr, Martins R, Otterson GA, Patel SP, Reckamp K, Riely GJ, Schild SE, Shapiro TA, Stevenson J, Swanson SJ, Tauer K, Yang SC, Gregory K, Hughes M (2018) NCCN guidelines insights: non-small cell lung cancer, version 5.2018. J Natl Compr Cancer Netw 16:807–821CrossRefGoogle Scholar
  36. 36.
    Alì G, Bruno R, Savino M, Giannini R, Pelliccioni S, Menghi M, Boldrini L, Proietti A, Chella A, Ribechini A, Fontanini G (2018) Analysis of fusion genes by NanoString system: a role in lung cytology? Arch Pathol Lab Med 142:480–489CrossRefPubMedGoogle Scholar
  37. 37.
    Sgariglia R, Pisapia P, Nacchio M, De Luca C, Pepe F, Russo M, Bellevicine C, Troncone G, Malapelle U (2017) Multiplex digital colour-coded barcode technology on RNA extracted from routine cytological samples of patients with non-small cell lung cancer: pilot study. J Clin Pathol 70:803–806CrossRefPubMedGoogle Scholar
  38. 38.
    Cancer Genome Atlas Research Network (2017) Electronic address: andrew_aguirre@dfci.harvard.edu; Cancer Genome Atlas Research Network. Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell 32:185–203.e13Google Scholar
  39. 39.
    Pancreas and ampullary region, in Rosai and Ackerman’s Surgical Pathology 11th edition, by Goldblum, Lamps, McKenney and Myers (2018) Elsevier, pp 886–933Google Scholar
  40. 40.
    Masetti M, Acquaviva G, Visani M, Tallini G, Fornelli A, Ragazzi M, Vasuri F, Grifoni D, Di Giacomo S, Fiorino S, Lombardi R, Tuminati D, Ravaioli M, Fabbri C, Bacchi-Reggiani ML, Pession A, Jovine E, de Biase D (2018) Long-term survivors of pancreatic adenocarcinoma show low rates of genetic alterations in KRAS, TP53 and SMAD4. Cancer Biomark 21:323–334CrossRefPubMedGoogle Scholar
  41. 41.
    Pishvaian MJ, Bender RJ, Halverson D, Rahib L, Hendifar AE, Mikhail S, Chung V, Picozzi VJ, Sohal D, Blais EM, Mason K, Lyons EE, Matrisian LM, Brody JR, Madhavan S, Petricoin EF 3rd (2018) Molecular profiling of patients with pancreatic cancer: initial results from the know your tumor initiative. Clin Cancer Res 24:5018–5027CrossRefPubMedGoogle Scholar
  42. 42.
    de Biase D, de Luca C, Gragnano G, Visani M, Bellevicine C, Malapelle U, Tallini G, Troncone G (2016) Fully automated PCR detection of KRAS mutations on pancreatic endoscopic ultrasound fine-needle aspirates. J Clin Pathol doi: 10.1136Google Scholar
  43. 43.
    Fabbri C, Gibiino G, Fornelli A, Cennamo V, Grifoni D, Visani M, Acquaviva G, Fassan M, Fiorino S, Giovanelli S, Bassi M, Ghersi S, Tallini G, Jovine E, Gasbarrini A, de Biase D (2017) Team work and cytopathology molecular diagnosis of solid pancreatic lesions. Dig Endosc 29:657–666CrossRefPubMedGoogle Scholar
  44. 44.
    de Biase D, Visani M, Acquaviva G, Fornelli A, Masetti M, Fabbri C, Pession A, Tallini G (2018) The role of next-generation sequencing in the cytologic diagnosis of pancreatic lesions. Arch Pathol Lab Med 142:458–464CrossRefPubMedGoogle Scholar
  45. 45.
    Young G, Wang K, He J, Otto G, Hawryluk M, Zwirco Z, Brennan T, Nahas M, Donahue A, Yelensky R, Lipson D, Sheehan CE, Boguniewicz AB, Stephens PJ, Miller VA, Ross JS (2013) Clinical next-generation sequencing successfully applied to fine-needle aspirations of pulmonary and pancreatic neoplasms. Cancer Cytopathol 121:688–694CrossRefPubMedGoogle Scholar
  46. 46.
    Visani M, de Biase D, Baccarini P, Fabbri C, Polifemo AM, Zanini N, Pession A, Tallini G (2013) Multiple KRAS mutations in pancreatic adenocarcinoma: molecular features of neoplastic clones indicate the selection of divergent populations of tumor cells. Int J Surg Pathol 21:546–552CrossRefPubMedGoogle Scholar
  47. 47.
    de Biase D, Visani M, Baccarini P, Polifemo AM, Maimone A, Fornelli A, Giuliani A, Zanini N, Fabbri C, Pession A, Tallini G (2014) Next generation sequencing improves the accuracy of KRAS mutation analysis in endoscopic ultrasound fine needle aspiration pancreatic lesions. PLoS One 9:e87651.  https://doi.org/10.1371/journal.pone.0087651 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Di Marco M, Astolfi A, Grassi E, Vecchiarelli S, Macchini M, Indio V, Casadei R, Ricci C, D’Ambra M, Taffurelli G, Serra C, Ercolani G, Santini D, D’Errico A, Pinna AD, Minni F, Durante S, Martella LR, Biasco G (2015) Characterization of pancreatic ductal adenocarcinoma using whole transcriptome sequencing and copy number analysis by single-nucleotide polymorphism array. Mol Med Rep 12:7479–7484CrossRefPubMedGoogle Scholar
  49. 49.
    Kubota Y, Kawakami H, Natsuizaka M, Kawakubo K, Marukawa K, Kudo T, Abe Y, Kubo K, Kuwatani M, Hatanaka Y, Mitsuhashi T, Matsuno Y, Sakamoto N (2015) CTNNB1 mutational analysis of solid-pseudopapillary neoplasms of the pancreas using endoscopic ultrasound-guided fine-needle aspiration and next-generation deep sequencing. J Gastroenterol 50:203–210CrossRefPubMedGoogle Scholar
  50. 50.
    Dudley JC, Zheng Z, McDonald T, Le LP, Dias-Santagata D, Borger D, Batten J, Vernovsky K, Sweeney B, Arpin RN, Brugge WR, Forcione DG, Pitman MB, Iafrate AJ (2016) Next-generation sequencing and fluorescence in situ hybridization have comparable performance characteristics in the analysis of pancreaticobiliary brushings for malignancy. J Mol Diagn 18:124–130CrossRefPubMedGoogle Scholar
  51. 51.
    Kameta E, Sugimori K, Kaneko T, Ishii T, Miwa H, Sato T, Ishii Y, Sue S, Sasaki T, Yamashita Y, Shibata W, Matsumoto N, Maeda S (2016) Diagnosis of pancreatic lesions collected by endoscopic ultrasound-guided fine-needle aspiration using next-generation sequencing. Oncol Lett 12:3875–3881CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Valero V 3rd, Saunders TJ, He J, Weiss MJ, Cameron JL, Dholakia A, Wild AT, Shin EJ, Khashab MA, O’Broin-Lennon AM, Ali SZ, Laheru D, Hruban RH, Iacobuzio-Donahue CA, Herman JM, Wolfgang CL (2016) Reliable detection of somatic mutations in fine needle aspirates of pancreatic cancer with next-generation sequencing: implications for surgical management. Ann Surg 263:153–161CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Gleeson FC, Kerr SE, Kipp BR, Voss JS, Minot DM, Tu ZJ, Henry MR, Graham RP, Vasmatzis G, Cheville JC, Lazaridis KN, Levy MJ (2016) Targeted next generation sequencing of endoscopic ultrasound acquired cytology from ampullary and pancreatic adenocarcinoma has the potential to aid patient stratification for optimal therapy selection. Oncotarget 7:54526–54536.  https://doi.org/10.18632/oncotarget.9440 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Sibinga Mulder BG, Mieog JS, Handgraaf HJ, Farina Sarasqueta A, Vasen HF, Potjer TP, Swijnenburg RJ, Luelmo SA, Feshtali S, Inderson A, Vahrmeijer AL, Bonsing BA, van Wezel T, Morreau H (2017) Targeted next-generation sequencing of FNA-derived DNA in pancreatic cancer. J Clin Pathol 70:174–178CrossRefPubMedGoogle Scholar
  55. 55.
    Sibinga Mulder BG, Mieog JSD, Farina Sarasqueta A, Handgraaf HJ, Vasen HFA, Swijnenburg RJ, Luelmo SAC, Feshtali S, Inderson A, Vahrmeijer AL, Bonsing BA, Wezel TV, Morreau H (2018) Diagnostic value of targeted next-generation sequencing in patients with suspected pancreatic or periampullary cancer. J Clin Pathol 71:246–252CrossRefPubMedGoogle Scholar
  56. 56.
    Amato E, Molin MD, Mafficini A, Yu J, Malleo G, Rusev B, Fassan M, Antonello D, Sadakari Y, Castelli P, Zamboni G, Maitra A, Salvia R, Hruban RH, Bassi C, Capelli P, Lawlor RT, Goggins M, Scarpa A (2014) Targeted next-generation sequencing of cancer genes dissects the molecular profiles of intraductal papillary neoplasms of the pancreas. J Pathol 233:217–227CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Wang J, Paris PL, Chen J, Ngo V, Yao H, Frazier ML, Killary AM, Liu CG, Liang H, Mathy C, Bondada S, Kirkwood K, Sen S (2015) Next generation sequencing of pancreatic cyst fluid microRNAs from low grade-benign and high grade-invasive lesions. Cancer Lett 356:404–409CrossRefPubMedGoogle Scholar
  58. 58.
    Springer S, Wang Y, Dal Molin M, Masica DL, Jiao Y, Kinde I, Blackford A, Raman SP, Wolfgang CL, Tomita T, Niknafs N, Douville C, Ptak J, Dobbyn L, Allen PJ, Klimstra DS, Schattner MA, Schmidt CM, Yip-Schneider M, Cummings OW, Brand RE, Zeh HJ, Singhi AD, Scarpa A, Salvia R, Malleo G, Zamboni G, Falconi M, Jang JY, Kim SW, Kwon W, Hong SM, Song KB, Kim SC, Swan N, Murphy J, Geoghegan J, Brugge W, Fernandez-Del Castillo C, Mino-Kenudson M, Schulick R, Edil BH, Adsay V, Paulino J, van Hooft J, Yachida S, Nara S, Hiraoka N, Yamao K, Hijioka S, van der Merwe S, Goggins M, Canto MI, Ahuja N, Hirose K, Makary M, Weiss MJ, Cameron J, Pittman M, Eshleman JR, Diaz LA Jr, Papadopoulos N, Kinzler KW, Karchin R, Hruban RH, Vogelstein B, Lennon AM (2015) A combination of molecular markers and clinical features improve the classification of pancreatic cysts. Gastroenterology 149:1501–1510CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Jones M, Zheng Z, Wang J, Dudley J, Albanese E, Kadayifci A, Dias-Santagata D, Le L, Brugge WR, Fernandez-del Castillo C, Mino-Kenudson M, Iafrate AJ, Pitman MB (2016) Impact of next-generation sequencing on the clinical diagnosis of pancreatic cysts. Gastrointest Endosc 83:140–148CrossRefPubMedGoogle Scholar
  60. 60.
    Rosenbaum MW, Jones M, Dudley JC, Le LP, Iafrate AJ, Pitman MB (2017) Next-generation sequencing adds value to the preoperative diagnosis of pancreatic cysts. Cancer Cytopathol 125:41–47CrossRefPubMedGoogle Scholar
  61. 61.
    Singhi AD, McGrath K, Brand RE, Khalid A, Zeh HJ, Chennat JS, Fasanella KE, Papachristou GI, Slivka A, Bartlett DL, Dasyam AK, Hogg M, Lee KK, Marsh JW, Monaco SE, Ohori NP, Pingpank JF, Tsung A, Zureikat AH, Wald AI, Nikiforova MN (2018) Preoperative next-generation sequencing of pancreatic cyst fluid is highly accurate in cyst classification and detection of advanced neoplasia. Gut 67:2131–2141CrossRefPubMedGoogle Scholar
  62. 62.
    Zill OA, Greene C, Sebisanovic D, Siew LM, Leng J, Vu M, Hendifar AE, Wang Z, Atreya CE, Kelley RK, Van Loon K, Ko AH, Tempero MA, Bivona TG, Munster PN, Talasaz A, Collisson EA (2015) Cell-free DNA next-generation sequencing in pancreatobiliary carcinomas. Cancer Discov 5:1040–1048CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Berger AW, Schwerdel D, Costa IG, Hackert T, Strobel O, Lam S, Barth TF, Schröppel B, Meining A, Büchler MW, Zenke M, Hermann PC, Seufferlein T, Kleger A (2016) Detection of hot-spot mutations in circulating cell-free DNA from patients with intraductal papillary mucinous neoplasms of the pancreas. Gastroenterology 151:267–270CrossRefPubMedGoogle Scholar
  64. 64.
    Yu J, Sadakari Y, Shindo K, Suenaga M, Brant A, Almario JAN, Borges M, Barkley T, Fesharakizadeh S, Ford M, Hruban RH, Shin EJ, Lennon AM, Canto MI, Goggins M (2017) Digital next-generation sequencing identifies low-abundance mutations in pancreatic juice samples collected from the duodenum of patients with pancreatic cancer and intraductal papillary mucinous neoplasms. Gut 66:1677–1687CrossRefPubMedGoogle Scholar
  65. 65.
    Paschke R, Cantara S, Crescenzi A, Jarzab B, Musholt TJ, Sobrinho Simoes M (2017) European thyroid association guidelines regarding thyroid nodule molecular fine-needle aspiration cytology diagnostics. Eur Thyroid J 6:115–129CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Steward DL, Carty SE, Sippel RS, Yang SP, Sosa JA, Sipos JA, Figge JJ, Mandel S, Haugen BR, Burman KD, Baloch ZW, Lloyd RV, Seethala RR, Gooding WE, Chiosea SI, Gomes-Lima C, Ferris RL, Folek JM, Khawaja RA, Kundra P, Loh KS, Marshall CB, Mayson S, McCoy KL, Nga ME, Ngiam KY, Nikiforova MN, Poehls JL, Ringel MD, Yang H, Yip L, Nikiforov YE (2018) Performance of a multigene genomic classifier in thyroid nodules with indeterminate cytology: a prospective blinded multicenter study. JAMA OncolGoogle Scholar
  67. 67.
    Bellevicine C, Sgariglia R, Malapelle U, Vigliar E, Nacchio M, Ciancia G, Eszlinger M, Paschke R, Troncone G (2016) Young investigator challenge: can the ion AmpliSeq Cancer Hotspot Panel v2 be used for next-generation sequencing of thyroid FNA samples? Cancer Cytopathol 124:776–784CrossRefPubMedGoogle Scholar
  68. 68.
    Shah RH, Scott SN, Brannon AR, Levine DA, Lin O, Berger MF (2015) Comprehensive mutation profiling by next-generation sequencing of effusion fluids from patients with high-grade serous ovarian carcinoma. Cancer Cytopathol 123:289–297CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sinchita Roy-Chowdhuri
    • 1
  • Pasquale Pisapia
    • 2
  • Manuel Salto-Tellez
    • 3
  • Spasenija Savic
    • 4
  • Mariantonia Nacchio
    • 2
  • Dario de Biase
    • 5
  • Giovanni Tallini
    • 6
  • Giancarlo Troncone
    • 2
    Email author
  • Fernando Schmitt
    • 7
    • 8
  1. 1.Department of PathologyThe University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Department of Public HealthUniversity of Naples Federico IINaplesItaly
  3. 3.Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell BiologyQueen’s University BelfastBelfastUK
  4. 4.Institute of PathologyUniversity Hospital BaselBaselSwitzerland
  5. 5.Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
  6. 6.Anatomic PathologyUniversity of Bologna Medical CenterBolognaItaly
  7. 7.Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP)PortoPortugal
  8. 8.Department of PathologyMedical Faculty of Porto UniversityPortoPortugal

Personalised recommendations