Role of epithelial–mesenchymal transition factors in the histogenesis of uterine carcinomas

  • Tatiana Franceschi
  • Emeline Durieux
  • Anne Pierre Morel
  • Pierre de Saint Hilaire
  • Isabelle Ray-Coquard
  • Alain Puisieux
  • Mojgan Devouassoux-ShisheboranEmail author
Original Article


Several subtypes of high-grade endometrial carcinomas (ECs) contain an undifferentiated component of non-epithelial morphology, including undifferentiated and dedifferentiated carcinomas and carcinosarcomas (CSs). The mechanism by which an EC undergoes dedifferentiation has been the subject of much debate. The epithelial–mesenchymal transition (EMT) is one of the mechanisms implicated in the transdifferentiation of high-grade carcinomas. To improve our understanding of the role of EMT in these tumors, we studied a series of 89 carcinomas including 14 undifferentiated/dedifferentiated endometrial carcinomas (UECs/DECs), 49 CSs (21 endometrial, 29 tubo-ovarian and peritoneal), 17 endometrioid carcinomas (grade 1–3), and 9 high-grade serous carcinomas of the uterus, using a panel of antibodies targeting known epithelial markers (Pan-Keratin AE1/AE3 and E-cadherin), mesenchymal markers (N-cadherin), EMT transcription factors (TFs) (ZEB1, ZEB2, TWIST1), PAX8, estrogen receptors (ER), progesterone receptors (PR), and the p53 protein. At least one of the three EMT markers (more frequently ZEB1) was positive in the sarcomatous component of 98% (n = 48/49) of CSs and 98% (n = 13/14) of the undifferentiated component of UEC/DEC. In addition, 86% of sarcomatous areas of CSs and 79% of the undifferentiated component of UEC/DEC expressed all three EMT-TFs. The expression of these markers was associated with the loss of or reduction in epithelial markers (Pan-keratin, E-cadherin), PAX8, and hormone receptors. In contrast, none of the endometrioid and serous endometrial carcinomas expressed ZEB1, while 6% and 36% of endometrioid and 11% and 25% of serous carcinomas focally expressed ZEB2 and TWIST1, respectively. Although morphologically different, EMT appears to be implicated in the dedifferentiation in both CSs and UEC/DEC. Indeed, we speculate that the occurrence of EMT in a well differentiated endometrioid carcinoma may consecutively lead to a dedifferentiated and undifferentiated carcinoma, while in a type II carcinoma, it may result in a CS.


Epithelial mesenchymal transition ZEB1 ZEB2 TWIST Endometrial carcinoma Dedifferentiated Undifferentiated 


Author’s contribution

Tatiana Franceschi: writing of the article and immunohistochemical analyses.

Emeline Durieux: immunohistochemical analyses and selection of the cases and of the paraffin blocks.

Anne Pierre Morel: choosing and providing antibodies for the study and critical review of the manuscript.

Pierre de Saint Hilaire: selection of the patients and surgery and providing surgical tumor material for the study.

Isabelle Ray-Coquard: selection of the patients,

Alain Puisieux: designing the study, critical review of the article.

Mojgan Devouassoux-Shisheboran: designing the study and writing of the article.

Compliance with ethical standards

The study was approved by the Ethics Committee of the Medical Board (CHU Lyon). This study was conducted in accordance with the Declaration of Helsinki.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    WHO Classification of tumours of female reproductive organs. Fourth Edition—WHO—OMS. [En ligne]. Disponible sur: Consulté le: 25-Juill-2017
  2. 2.
    Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454Google Scholar
  3. 3.
    Romero-Pérez L et al (2013) ZEB1 overexpression associated with E-cadherin and microRNA-200 downregulation is characteristic of undifferentiated endometrial carcinoma. Mod Pathol Off J U S Can Acad Pathol Inc 26(11):1514–1524Google Scholar
  4. 4.
    Zeisberg M, Neilson EG (2009) Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 119(6):1429–1437Google Scholar
  5. 5.
    Thiery J-P (2009) Epithelial-mesenchymal transitions in cancer onset and progression. Bull Acad Natl Med 193(9):1969–1978; discussion 1978–1979Google Scholar
  6. 6.
    Puisieux A, Brabletz T, Caramel J (2014) Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol 16(6):488–494Google Scholar
  7. 7.
    Nieto MA, Huang RY-J, Jackson RA, Thiery JP (2016) EMT: 2016. Cell 166(1):21–45Google Scholar
  8. 8.
    Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 110(3):341–350Google Scholar
  9. 9.
    Brabletz T et al (2001) Variable β-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A 98(18):10356–10361Google Scholar
  10. 10.
    Brabletz T (2012) To differentiate or not—routes towards metastasis. Nat Rev Cancer 12(6):425–436Google Scholar
  11. 11.
    Peinado H, Olmeda D, Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7(6):415–428Google Scholar
  12. 12.
    Hugo H et al (2007) Epithelial—mesenchymal and mesenchymal—epithelial transitions in carcinoma progression. J. Cell. Physiol. 213(2):374–383Google Scholar
  13. 13.
    Caramel J et al (2013) A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma. Cancer Cell 24(4):466–480Google Scholar
  14. 14.
    Ansieau S et al (2008) Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell 14(1):79–89Google Scholar
  15. 15.
    Valsesia-Wittmann S et al (2004) Oncogenic cooperation between H-Twist and N-Myc overrides failsafe programs in cancer cells. Cancer Cell 6(6):625–630Google Scholar
  16. 16.
    Morel A-P et al (2012) EMT inducers catalyze malignant transformation of mammary epithelial cells and drive tumorigenesis towards claudin-low tumors in transgenic mice. PLoS Genet 8(5):e1002723Google Scholar
  17. 17.
    Mani SA et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715Google Scholar
  18. 18.
    Morel A-P, Lièvre M, Thomas C, Hinkal G, Ansieau S, Puisieux A (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS ONE 3(8):e2888Google Scholar
  19. 19.
    Morel A-P et al (2017) A stemness-related ZEB1–MSRB3 axis governs cellular pliancy and breast cancer genome stability. Nat Med 23(5):568–578Google Scholar
  20. 20.
    Colas E et al (2012) The EMT signaling pathways in endometrial carcinoma. Clin Transl Oncol Off Publ Fed Span Oncol Soc Natl Cancer Inst Mex 14(10):715–720Google Scholar
  21. 21.
    Montserrat N et al (2012) Epithelial to mesenchymal transition in early stage endometrioid endometrial carcinoma. Hum Pathol 43(5):632–643Google Scholar
  22. 22.
    Dong P, Konno Y, Watari H, Hosaka M, Noguchi M, Sakuragi N (2014) The impact of microRNA-mediated PI3K/AKT signaling on epithelial-mesenchymal transition and cancer stemness in endometrial cancer. J Transl Med 12:231Google Scholar
  23. 23.
    Köbel M, Ronnett BM, Singh N, Soslow RA, Gilks CB, McCluggage WG (2019) Interpretation of P53 immunohistochemistry in endometrial carcinomas: toward increased reproducibility. Int J Gynecol Pathol Off J Int Soc Gynecol Pathol 38(Suppl 1):S123–S131Google Scholar
  24. 24.
    Recommendations for the immunohistochemistry of the hormonal receptors on paraffin sections in breast cancer. Update 1999 (1999) Group for Evaluation of Prognostic Factors using Immunohistochemistry in Breast Cancer (GEFPICS-FNCLCC). Ann Pathol 19(4):336–343Google Scholar
  25. 25.
    Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10(7):445–457Google Scholar
  26. 26.
    Thiery JP, Acloque H, Huang RYJ, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890Google Scholar
  27. 27.
    Ye X, Weinberg RA (2015) Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol 25(11):675–686Google Scholar
  28. 28.
    Stewart CJR, McCluggage WG (2013) Epithelial-mesenchymal transition in carcinomas of the female genital tract. Histopathology 62(1):31–43Google Scholar
  29. 29.
    Ribatti D (2017) Epithelial-mesenchymal transition in morphogenesis, cancer progression and angiogenesis. Exp Cell Res 353(1):1–5Google Scholar
  30. 30.
    Gregory PA et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601Google Scholar
  31. 31.
    Park S-M, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22(7):894–907Google Scholar
  32. 32.
    Burk U et al (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9(6):582–589Google Scholar
  33. 33.
    Bracken CP et al (2008) A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 68(19):7846–7854Google Scholar
  34. 34.
    Stewart CJR, Crook ML (2015) Fascin expression in undifferentiated and dedifferentiated endometrial carcinoma. Hum Pathol 46(10):1514–1520Google Scholar
  35. 35.
    Xing P et al (2011) Fascin, an actin-bundling protein, promotes breast cancer progression in vitro. Cell Biochem. Funct. 29(4):303–310Google Scholar
  36. 36.
    Mao X, Duan X, Jiang B (2016) Fascin induces epithelial-mesenchymal transition of cholangiocarcinoma cells by regulating Wnt/β-catenin signaling. Med Sci Monit Int Med J Exp Clin Res 22:3479–3485Google Scholar
  37. 37.
    Hayashi Y, Osanai M, Lee G-H (2011) Fascin-1 expression correlates with repression of E-cadherin expression in hepatocellular carcinoma cells and augments their invasiveness in combination with matrix metalloproteinases. Cancer Sci 102(6):1228–1235Google Scholar
  38. 38.
    Richmond AM, Blake EA, Torkko K, Smith EE, Spillman MA, Post MD (2017) Fascin is associated with aggressive behavior and poor outcome in uterine carcinosarcoma. Int J Gynecol Cancer 27:1895–1903Google Scholar
  39. 39.
    Ramalingam P, Masand RP, Euscher ED, Malpica A (2016) Undifferentiated carcinoma of the endometrium: an expanded immunohistochemical analysis including PAX-8 and basal-like carcinoma surrogate markers. Int J Gynecol Pathol Off J Int Soc Gynecol Pathol 35(5):410–418Google Scholar
  40. 40.
    Onder S et al (2017) High expression of SALL4 and fascin, and loss of E-cadherin expression in undifferentiated/dedifferentiated carcinomas of the endometrium: an immunohistochemical and clinicopathologic study. Medicine (Baltimore) 96(10):e6248Google Scholar
  41. 41.
    Kuhn E, Ayhan A, Bahadirli-Talbott A, Zhao C, Shih I-M (2014) Molecular characterization of undifferentiated carcinoma associated with endometrioid carcinoma. Am J Surg Pathol 38(5):660–665Google Scholar
  42. 42.
    Rosa-Rosa JM et al (2016) Molecular genetic heterogeneity in undifferentiated endometrial carcinomas. Mod Pathol Off J U S Can Acad Pathol Inc 29(11):1390–1398Google Scholar
  43. 43.
    Tessier-Cloutier B, Soslow RA, Stewart CJR, Köbel M, Lee C-H (2018) Frequent loss of claudin-4 expression in dedifferentiated and undifferentiated endometrial carcinomas. Histopathology 73(2):299–305Google Scholar
  44. 44.
    Lin X, Shang X, Manorek G, Howell SB (2013) Regulation of the epithelial-mesenchymal transition by claudin-3 and claudin-4. PloS One 8(6):e67496Google Scholar
  45. 45.
    Sánchez-Tilló E et al (2010) ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin-remodeling protein BRG1. Oncogene 29(24):3490–3500Google Scholar
  46. 46.
    Karnezis AN et al (2016) Loss of switch/sucrose non-fermenting complex protein expression is associated with dedifferentiation in endometrial carcinomas. Mod Pathol Off J U S Can Acad Pathol Inc 29(3):302–314Google Scholar
  47. 47.
    Romero-Pérez L et al (2013) Molecular events in endometrial carcinosarcomas and the role of high mobility group AT-hook 2 in endometrial carcinogenesis. Hum Pathol 44(2):244–254Google Scholar
  48. 48.
    Castilla MÁ et al (2011) Micro-RNA signature of the epithelial-mesenchymal transition in endometrial carcinosarcoma. J Pathol 223(1):72–80Google Scholar
  49. 49.
    Chiyoda T et al (2012) Expression profiles of carcinosarcoma of the uterine corpus-are these similar to carcinoma or sarcoma? Genes. Chromosomes Cancer 51(3):229–239Google Scholar
  50. 50.
    Saegusa M, Hashimura M, Kuwata T, Okayasu I (2009) Requirement of the Akt/beta-catenin pathway for uterine carcinosarcoma genesis, modulating E-cadherin expression through the transactivation of slug. Am J Pathol 174(6):2107–2115Google Scholar
  51. 51.
    Díaz-Martín J et al (2014) A core microRNA signature associated with inducers of the epithelial-to-mesenchymal transition. J Pathol 232(3):319–329Google Scholar
  52. 52.
    Pang A, Carbini M, Moreira AL, Maki RG (2018) Carcinosarcomas and related cancers: tumors caught in the act of epithelial-mesenchymal transition. J Clin Oncol Off J Am Soc Clin Oncol 36(2):210–216Google Scholar
  53. 53.
    Cherniack AD et al (2017) Integrated molecular characterization of uterine carcinosarcoma. Cancer Cell 31(3):411–423Google Scholar
  54. 54.
    Zhao S et al (2016) Mutational landscape of uterine and ovarian carcinosarcomas implicates histone genes in epithelial-mesenchymal transition. Proc Natl Acad Sci U S A 113(43):12238–12243Google Scholar
  55. 55.
    de Jong RA, Nijman HW, Wijbrandi TF, Reyners AK, Boezen HM, Hollema H (2011) Molecular markers and clinical behavior of uterine carcinosarcomas: focus on the epithelial tumor component. Mod Pathol Off J U S Can Acad Pathol Inc 24(10):1368–1379Google Scholar
  56. 56.
    Tanaka Y et al (2013) Prognostic impact of EMT (epithelial-mesenchymal-transition)-related protein expression in endometrial cancer. Cancer Biol Ther 14(1):13–19Google Scholar
  57. 57.
    Kim T et al (2011) p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med 208(5):875–883Google Scholar
  58. 58.
    Chang C-J et al (2011) p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 13(3):317–323Google Scholar
  59. 59.
    Dong P et al (2013) Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis. Oncogene 32(27):3286–3295Google Scholar
  60. 60.
    Ansieau S, Courtois-Cox S, Morel A-P, Puisieux A (2011) Failsafe program escape and EMT: a deleterious partnership. Semin Cancer Biol 21(6):392–396Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Tatiana Franceschi
    • 1
  • Emeline Durieux
    • 1
  • Anne Pierre Morel
    • 2
  • Pierre de Saint Hilaire
    • 3
  • Isabelle Ray-Coquard
    • 2
    • 4
    • 5
  • Alain Puisieux
    • 2
  • Mojgan Devouassoux-Shisheboran
    • 1
    • 2
    • 5
    Email author
  1. 1.Department of Pathology, Hospices Civils de Lyon, Centre de Biologie et de Pathologie Sud, Chemin du Grand RevoyetUniversité de Lyon, Université Claude Bernard Lyon IPierre Bénite CedexFrance
  2. 2.INSERM 1052, CNRS 5286 Cancer Research Center of Lyon, Equipe labellisée Ligue contre le CancerUniversité de Lyon, Université Claude Bernard Lyon ILyon Cedex 08France
  3. 3.Department of Gynecology, Hospices Civils de LyonLyon Cedex 04France
  4. 4.Department of Oncology, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon ILyon Cedex 08France
  5. 5.Réseau INCa des tumeurs rares de l’ovaire (TMRO) (

Personalised recommendations