Advertisement

Virchows Archiv

, Volume 474, Issue 2, pp 139–147 | Cite as

HLA testing in the molecular diagnostic laboratory

  • Kathleen Madden
  • Devon Chabot-RichardsEmail author
Review and Perspectives
  • 207 Downloads

Abstract

The human leukocyte antigen (HLA) system is a highly polymorphic family of genes involved in immunity and responsible for identifying self versus non-self. HLA typing is essential for solid organ and bone marrow transplantation as well as in non-transplant settings such as disease association and pharmacogenomics. Typing of HLA genes differs from most molecular testing as, rather than evaluating differences from an accepted “wild-type” gene, it must distinguish between thousands of similar, but distinct alleles. This article will describe the HLA system and nomenclature. We will then discuss clinical uses of HLA typing including solid organ transplantation, hematopoietic stem cell transplantation, evaluation of platelet refractory patients, disease association, and pharmacogenetics. Finally, we describe common molecular methods of HLA typing.

Keywords

Molecular HLA Transplantation Immunogenetics SSO SSP 

Notes

Authors contributions

Both authors contributed significantly to the writing and preparation of this manuscript.

Compliance with ethical standards

The manuscript is an original work of all authors. All authors made a significant contribution to this study. All authors have read and approved the final version of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Klein J, Sato A (2000) The HLA system. First of two parts. N Engl J Med 343(10):702–709 Review.2CrossRefGoogle Scholar
  2. 2.
    Mosaad YM (2015) Clinical role of human leukocyte antigen in health and disease. Scand J Immunol 82(4):283–306.  https://doi.org/10.1111/sji.12329 Review.3CrossRefGoogle Scholar
  3. 3.
    Gragert L, Madbouly A, Freeman J, Maiers M (2013) Six-locus high resolution HLA haplotype frequencies derived from mixed-resolution DNA typing for the entire US donor registry. Hum Immunol 74(10):1313–1320CrossRefGoogle Scholar
  4. 4.
    Kamoun M, Hollenbach JA, Mack SJ et al (2016) Molecular HLA typing. In: Leonard D (ed) Molecular pathology in clinical practice, 2nd edn. Springer International Publishing, Springer Science+Business Media, Switzerland, pp 867–885CrossRefGoogle Scholar
  5. 5.
    Marsh SG, Albert ED, Bodmer WF et al (2010) Nomenclature for factors of the HLA system, 2010. Tissue Antigens 75(4):291–455CrossRefGoogle Scholar
  6. 6.
    Fung MK, Benson K (2015) Using HLA typing to support patients with cancer. Cancer Control 22(1):79–86 ReviewCrossRefGoogle Scholar
  7. 7.
    Nunes E, Heslop H, Fernandez-Vina M, Taves C, Wagenknecht DR, Eisenbrey AB, Fischer G, Poulton K, Wacker K, Hurley CK, Noreen H, Sacchi N (2011) Definitions of histocompatibility typing terms: Harmonization of Histocompatibility Typing Terms Working Group. Hum Immunol 72(12):1214–1216CrossRefGoogle Scholar
  8. 8.
    Sanchez-Mazas A, Vidan-Jeras B, Nunes JM, Fischer G, Little A-M, Bekmane U, Buhler S, Buus S, Claas F, Dormoy A, Dubois V, Eglite E, Eliaou J-F, Gonzalez-Galarza F, Grubic Z, Ivanova M, Lie B, Ligeiro D, Lokki ML, Martins da Silva B, Martorell J, Mendonça D, Middleton D, Papaioannous Voniatis D, Papasteriades C, Poli F, Riccio ME, Spyropoulou Vlachou M, Sulcebe G, Tonks S, Toungouz Nevessignsky M, Vangenot C, van Walraven A-M, Tiercy J-M (2012) Strategies to work with HLA data in human populations for histocompatibility, clinical transplantation, epidemiology and population genetics: HLA-NET methodological recommendations. Int J Immunogenet 39(6):459–476CrossRefGoogle Scholar
  9. 9.
    Organ Procurement and Transplantation Network Policies. Health resources and services administration. Effective 6/13/2018. https://optn.transplant.hrsa.gov/media/1200/optn_policies.pdf. Accessed 7/8/2018
  10. 10.
    Garces JC, Giusti S, Staffeld-Coit C, Bohorquez H, Cohen AJ, Loss GE (2017) Antibody-mediated rejection: a review. Ochsner J 17(1):46–55Google Scholar
  11. 11.
    Zachary AA, Leffell MS (2016) HLA mismatching strategies for solid organ transplantation—a balancing act. Front Immunol 7:575.  https://doi.org/10.3389/fimmu.2016.00575 eCollection 2016. ReviewCrossRefGoogle Scholar
  12. 12.
    Paramesh AS, Zhang R, Baber J, Yau CL, Slakey DP, Killackey MT, Ren Q, Sullivan K, Heneghan J, Florman SS (2010) The effect of HLA mismatch on highly sensitized renal allograft recipients. Clin Transpl 24(6):E247–E252.  https://doi.org/10.1111/j.1399-0012.2010.01306.x CrossRefGoogle Scholar
  13. 13.
    Heidt S, Haasnoot GW, van Rood JJ, Witvliet MD, Claas FHJ (2018) Kidney allocation based on proven acceptable antigens results in superior graft survival in highly sensitized patients. Kidney Int 93(2):491–500.  https://doi.org/10.1016/j.kint.2017.07.018 CrossRefGoogle Scholar
  14. 14.
    Transplant Referral Timing Guidelines. National Marrow Donor Program. Effective 10/2017. https://bethematchclinical.org/transplant-indications-and-outcomes/referral-timing-guidelines. Accessed 7/12/18
  15. 15.
    Fleischhauer K, Shaw BE, Gooley T et al (2012) International Histocompatibility Working Group in Hematopoietic Cell Transplantation. Effect of T-cell-epitope matching at HLA-DPB1 in recipients of unrelated-donor haemopoietic-cell transplantation: a retrospective study. Lancet Oncol 13(4):366–374CrossRefGoogle Scholar
  16. 16.
    Petersdorf EW (2007) Risk assessment in haematopoietic stem cell transplantation: histocompatibility. Best Pract Res Clin Haematol 20(2):155–170CrossRefGoogle Scholar
  17. 17.
    Crocchiolo R, Ciceri F, Fleischhauer K, Oneto R, Bruno B, Pollichieni S, Sacchi N, Sormani MP, Fanin R, Bandini G, Bonifazi F, Bosi A, Rambaldi A, Alessandrino PE, Falda M, Bacigalupo A (2009) HLA matching affects clinical outcome of adult patients undergoing haematopoietic SCT from unrelated donors: a study from the Gruppo Italiano Trapianto di Midollo Osseo and Italian Bone Marrow Donor Registry. Bone Marrow Transplant 44(9):571–577CrossRefGoogle Scholar
  18. 18.
    Gragert L, Eapen M, Williams E, Freeman J, Spellman S, Baitty R, Hartzman R, Rizzo JD, Horowitz M, Confer D, Maiers M (2014) HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N Engl J Med 371(4):339–348CrossRefGoogle Scholar
  19. 19.
    Kekre N, Antin JH (2014) Hematopoietic stem cell transplantation donor sources in the 21st century: choosing the ideal donor when a perfect match does not exist. Blood 124(3):334–343CrossRefGoogle Scholar
  20. 20.
    Elmariah H, Kasamon YL, Zahurak M, Macfarlane KW, Tucker N, Rosner GL, Bolaños-Meade J, Fuchs EJ, Wagner-Johnston N, Swinnen LJ, Huff CA, Matsui WH, Gladstone DE, McCurdy SR, Borrello I, Gocke CB, Shanbhag S, Cooke KR, Ali SA, Brodsky RA, DeZern AE, Luznik L, Jones RJ, Ambinder RF (2018) Haploidentical bone marrow transplantation with post-transplant cyclophosphamide using non–first-degree related donors. Biol Blood Marrow Transplant 24(5):1099–1102CrossRefGoogle Scholar
  21. 21.
    Fletcher CH, DomBourian MG, Millward PA (2015) Platelet Transfusion for Patients with Cancer. Cancer Control 22(1):47–51. ReviewCrossRefGoogle Scholar
  22. 22.
    Díaz-Peña R, López-Vázquez A, López-Larrea C (2012) Old and new HLA associations with ankylosing spondylitis. Tissue Antigens 80(3):205–213CrossRefGoogle Scholar
  23. 23.
    Reveille JD (2014) An update on the contribution of the MHC to as susceptibility. Clin Rheumatol 33(6):749–757CrossRefGoogle Scholar
  24. 24.
    Holoshitz J (2013) The quest for better understanding of HLA-disease association: scenes from a road less travelled by. Discov Med 16(87):93–101Google Scholar
  25. 25.
    Cardoso CS, Alves H, Mascarenhas M, Gonçalves R, Oliveira P, Rodrigues P, Cruz E, de Sousa M, Porto G (2002) Co-selection of the H63D mutation and the HLA-A29 allele: a new paradigm of linkage disequilibrium? Immunogenetics 53(12):1002–1008CrossRefGoogle Scholar
  26. 26.
    Shear NH, Milpied B, Bruynzeel DP, Phillips EJ (2008) A review of drug patch testing and implications for HIV clinicians. AIDS 22(9):999–1007CrossRefGoogle Scholar
  27. 27.
    Hung SI, Chung WH, Liou LB, Chu CC, Lin M, Huang HP, Lin YL, Lan JL, Yang LC, Hong HS, Chen MJ, Lai PC, Wu MS, Chu CY, Wang KH, Chen CH, Fann CSJ, Wu JY, Chen YT (2005) HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc 86 Cancer Control January 2015, Vol. 22, No. 1. Natl Acad Sci U S A 102(11):4134–4139CrossRefGoogle Scholar
  28. 28.
    Chung WH, Hung SI, Hong HS, Hsih MS, Yang LC, Ho HC, Wu JY, Chen YT (2004) Medical genetics: a marker for Stevens-Johnson syndrome. Nature 428(6982):486CrossRefGoogle Scholar
  29. 29.
    Daly AK, Donaldson PT, Bhatnagar P et al (2009) DILIGEN Study; International SAE consortium. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet 41(7):816–819CrossRefGoogle Scholar
  30. 30.
    Testi M, Andreani M (2015) Luminex-based methods in high-resolution HLA typing. In: Bugert P (eds) Molecular typing of blood cell antigens. Methods Mol Biol 1310:231–245Google Scholar
  31. 31.
    Heinemann FM (2009) HLA genotyping and antibody characterization using the LuminexTM multiplex technology. Transfus Med Hemother 36(4):273–278CrossRefGoogle Scholar
  32. 32.
    Dunckley H (2012) HLA typing by SSO and SSP methods. In: Christiansen FT, Tait Brian D (eds) Immunogenetics: methods and applications in clinical practice. Springer Science + Business Media, New YorkGoogle Scholar
  33. 33.
    Bunce M, O'Neill CM, Barnardo MC, Krausa P, Browning MJ, Morris PJ, Welsh KI (1995) Phototyping: comprehensive DNA typing for HLA-A, B, C, DRB1, DRB3, DRB4, DRB5 & DQB1 by PCR with 144 primer mixes utilizing sequence-specific primers (PCR-SSP). Tissue Antigens 46(5):355–367CrossRefGoogle Scholar
  34. 34.
    Mytilineos J, Lempert M, Scherer S, Schwarz V, Opelz G (1998) Comparison of serological and DNA PCR-SSP typing results for HLA-A and HLA-B in 421 black individuals: a collaborative transplant study report. Hum Immunol 59(8):512–517CrossRefGoogle Scholar
  35. 35.
    Arya M, Shergill IS, Williamson M, Gommersall L, Arya N, Patel HR (2005) Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn 5(2):209–219 ReviewCrossRefGoogle Scholar
  36. 36.
    Li XY, Liu JZ, Gao JZ (2001) Determination of a real-time fluorotyping strategy for the HLA-DR locus. Transplant Proc 33(1–2):498–499CrossRefGoogle Scholar
  37. 37.
    Dunn PP (2015) Novel approaches and Technologies in Molecular HLA typing. Methods Mol Biol 1310:213–230CrossRefGoogle Scholar
  38. 38.
    Kuzio S, Hanguehard A, Morelle M, Ronsin C (2004) Rapid screening for HLA-B27 by a TaqMan-PCR assay using sequence specific primers and a minor groove binder probe, a novel type of TaqMan probe. J Immunol Methods 287(1–2):179–186Google Scholar
  39. 39.
    Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467CrossRefGoogle Scholar
  40. 40.
    De Santis D, Dinauer D, Duke J et al (2013) 16th IHIW: review of HLA typing by NGS. Int J Immunogenet 40(1):72–76CrossRefGoogle Scholar
  41. 41.
    Gandhi MJ, Ferriola D, Huang Y, Duke JL, Monos D (2017) Targeted next-generation sequencing for human leukocyte antigen typing in a clinical laboratory: metrics of relevance and considerations for its successful implementation. Arch Pathol Lab Med 141(6):806–812CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PathologyUniversity of New MexicoAlbuquerqueMexico

Personalised recommendations