Virchows Archiv

, Volume 473, Issue 5, pp 607–614 | Cite as

Nuclear loss and cytoplasmic expression of androgen receptor in penile carcinomas: role as a driver event and as a prognosis factor

  • Hellen Kuasne
  • Mateus C. Barros-Filho
  • Fábio A. Marchi
  • Sandra A. Drigo
  • Cristovam Scapulatempo-Neto
  • Eliney F. Faria
  • Silvia R. RogattoEmail author
Original Article


Androgen receptor (AR) is a member of the steroid and nuclear family receptor that acts as transcription factor. AR signaling plays pivotal role in the development and progression of prostate cancer. However, the role of AR in penile cancer (PeCa) is poorly explored. Our previous molecular studies unveiled frequent AR mRNA loss in PeCa, which was further predicted as a major driver alteration in this neoplasm. Herein, we assessed the AR protein expression in 59 usual PeCa tissues and 42 surrounding normal tissues (SNT) by immunohistochemistry using a tissue microarray. In a paired analysis, we found a total absence of nuclear AR expression in PeCa while 95.2% of SNT samples presented strong nuclear AR expression (P < 0.001). Interestingly, 17 of 42 PeCa presented weak or moderate cytoplasmic AR staining, contrasting with 5 of 42 SNT (P = 0.008). Increased levels of AR cytoplasmic expression were related with poor prognosis features including advanced clinical staging (P = 0.044), compromised surgical margins (P = 0.005), and pathological inguinal node status (P = 0.047). Furthermore, AR cytoplasmic expression was also related with shorter overall survival (P = 0.032). In conclusion, the frequent loss of nuclear AR protein levels suggests a potential function in PeCa development. Based on this result, the androgen deprivation therapy is not indicated for PeCa patients. In addition, the AR cytoplasmic expression found in a significant number of cases (40.5%) showed prognostic value and pathways activated by the non-genomic AR signaling may represent a promising therapeutic strategy.


Penile carcinoma Androgen receptor Cytoplasmic AR expression Immunohistochemistry 



The authors would like to acknowledge Barretos Cancer Hospital, SP, for providing human specimens. We are also grateful to the Pathology Department of Barretos Cancer Hospital, SP, for TMA construction and analysis.

Compliance with ethical standards

The Institutional Human Research Ethics Committee (Barretos Cancer Hospital) approved the study (Protocol 363-2010).

Informed consent

Written informed consent was obtained from all patients.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Dehm SM, Tindall DJ (2007) Androgen receptor structural and functional elements: role and regulation in prostate cancer. Mol Endocrinol 21(12):2855–2863. CrossRefPubMedGoogle Scholar
  2. 2.
    Huang P, Chandra V, Rastinejad F (2010) Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu Rev Physiol 72:247–272. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Trapman J, Klaassen P, Kuiper GG, van der Korput JA, Faber PW, van Rooij HC, Geurts van Kessel A, Voorhorst MM, Mulder E, Brinkmann AO (1988) Cloning, structure and expression of a cDNA encoding the human androgen receptor. Biochem Biophys Res Commun 153(1):241–248CrossRefGoogle Scholar
  4. 4.
    Lubahn DB, Joseph DR, Sullivan PM, Willard HF, French FS, Wilson EM (1988) Cloning of human androgen receptor complementary DNA and localization to the X chromosome. Science 240(4850):327–330CrossRefGoogle Scholar
  5. 5.
    Roy AK, Lavrovsky Y, Song CS, Chen S, Jung MH, Velu NK, Bi BY, Chatterjee B (1999) Regulation of androgen action. Vitam Horm 55:309–352CrossRefGoogle Scholar
  6. 6.
    Lee HJ, Chang C (2003) Recent advances in androgen receptor action. Cell Mol Life Sci 60(8):1613–1622. CrossRefPubMedGoogle Scholar
  7. 7.
    Heinlein CA, Chang C (2002) The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol Endocrinol 16(10):2181–2187. CrossRefPubMedGoogle Scholar
  8. 8.
    Leung JK, Sadar MD (2017) Non-genomic actions of the androgen receptor in prostate cancer. Front Endocrinol (Lausanne) 8:2. CrossRefGoogle Scholar
  9. 9.
    Zarif JC, Miranti CK (2016) The importance of non-nuclear AR signaling in prostate cancer progression and therapeutic resistance. Cell Signal 28(5):348–356. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Eisermann K, Wang D, Jing Y, Pascal LE, Wang Z (2013) Androgen receptor gene mutation, rearrangement, polymorphism. Transl Androl Urol 2(3):137–147. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hu J, Wang G, Sun T (2017) Dissecting the roles of the androgen receptor in prostate cancer from molecular perspectives. Tumour Biol 39(5):1010428317692259. CrossRefPubMedGoogle Scholar
  12. 12.
    Christodoulidou M, Sahdev V, Houssein S, Muneer A (2015) Epidemiology of penile cancer. Curr Probl Cancer 39(3):126–136. CrossRefPubMedGoogle Scholar
  13. 13.
    Gregoire L, Cubilla AL, Reuter VE, Haas GP, Lancaster WD (1995) Preferential association of human papillomavirus with high-grade histologic variants of penile-invasive squamous cell carcinoma. J Natl Cancer Inst 87(22):1705–1709CrossRefGoogle Scholar
  14. 14.
    Miralles-Guri C, Bruni L, Cubilla AL, Castellsague X, Bosch FX, de Sanjose S (2009) Human papillomavirus prevalence and type distribution in penile carcinoma. J Clin Pathol 62(10):870–878. CrossRefPubMedGoogle Scholar
  15. 15.
    Cubilla AL, Lloveras B, Alejo M, Clavero O, Chaux A, Kasamatsu E, Velazquez EF, Lezcano C, Monfulleda N, Tous S, Alemany L, Klaustermeier J, Munoz N, Quint W, de Sanjose S, Bosch FX (2010) The basaloid cell is the best tissue marker for human papillomavirus in invasive penile squamous cell carcinoma: a study of 202 cases from Paraguay. Am J Surg Pathol 34(1):104–114. CrossRefPubMedGoogle Scholar
  16. 16.
    Ferrandiz-Pulido C, Masferrer E, de Torres I, Lloveras B, Hernandez-Losa J, Mojal S, Salvador C, Morote J, Ramon y Cajal S, Pujol RM, Garcia-Patos V, Toll A (2013) Identification and genotyping of human papillomavirus in a Spanish cohort of penile squamous cell carcinomas: correlation with pathologic subtypes, p16(INK4a) expression, and prognosis. J Am Acad Dermatol 68(1):73–82. CrossRefPubMedGoogle Scholar
  17. 17.
    Hernandez BY, Goodman MT, Unger ER, Steinau M, Powers A, Lynch CF, Cozen W, Saber MS, Peters ES, Wilkinson EJ, Copeland G, Hopenhayn C, Huang Y, Watson M, Altekruse SF, Lyu C, Saraiya M, Workgroup HPVToC (2014) Human papillomavirus genotype prevalence in invasive penile cancers from a registry-based United States population. Front Oncol 4:9. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Alemany L, Cubilla A, Halec G, Kasamatsu E, Quiros B, Masferrer E, Tous S, Lloveras B, Hernandez-Suarez G, Lonsdale R, Tinoco L, Alejo M, Alvarado-Cabrero I, Laco J, Guimera N, Poblet E, Lombardi LE, Bergeron C, Clavero O, Shin HR, Ferrera A, Felix A, Germar J, Mandys V, Clavel C, Tzardi M, Pons LE, Wain V, Cruz E, Molina C, Mota JD, Jach R, Velasco J, Carrilho C, Lopez-Revilla R, Goodman MT, Quint WG, Castellsague X, Bravo I, Pawlita M, Munoz N, Bosch FX, de Sanjose S, group HVs (2016) Role of human papillomavirus in penile carcinomas worldwide. Eur Urol 69(5):953–961. CrossRefPubMedGoogle Scholar
  19. 19.
    Kuasne H, Barros-Filho MC, Busso-Lopes A, Marchi FA, Pinheiro M, Munoz JJ, Scapulatempo-Neto C, Faria EF, Guimaraes GC, Lopes A, Trindade-Filho JC, Domingues MA, Drigo SA, Rogatto SR (2017) Integrative miRNA and mRNA analysis in penile carcinomas reveals markers and pathways with potential clinical impact. Oncotarget 8(9):15294–15306. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kidd LC, Chaing S, Chipollini J, Giuliano AR, Spiess PE, Sharma P (2017) Relationship between human papillomavirus and penile cancer-implications for prevention and treatment. Transl Androl Urol 6(5):791–802. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ali SM, Pal SK, Wang K, Palma NA, Sanford E, Bailey M, He J, Elvin JA, Chmielecki J, Squillace R, Dow E, Morosini D, Buell J, Yelensky R, Lipson D, Frampton GM, Howley P, Ross JS, Stephens PJ, Miller VA (2016) Comprehensive genomic profiling of advanced penile carcinoma suggests a high frequency of clinically relevant genomic alterations. Oncologist 21(1):33–39. CrossRefPubMedGoogle Scholar
  22. 22.
    Busso-Lopes AF, Marchi FA, Kuasne H, Scapulatempo-Neto C, Trindade-Filho JC, de Jesus CM, Lopes A, Guimaraes GC, Rogatto SR (2015) Genomic profiling of human penile carcinoma predicts worse prognosis and survival. Cancer Prev Res (Phila) 8(2):149–156. CrossRefGoogle Scholar
  23. 23.
    Feber A, Arya M, de Winter P, Saqib M, Nigam R, Malone PR, Tan WS, Rodney S, Lechner M, Freeman A, Jameson C, Muneer A, Beck S, Kelly JD (2015) Epigenetics markers of metastasis and HPV-induced tumorigenesis in penile cancer. Clin Cancer Res 21(5):1196–1206. CrossRefPubMedGoogle Scholar
  24. 24.
    Ferrandiz-Pulido C, Hernandez-Losa J, Masferrer E, Vivancos A, Somoza R, Mares R, Valverde C, Salvador C, Placer J, Morote J, Pujol RM, Ramon y Cajal S, de Torres I, Toll A, Garcia-Patos V (2015) Identification of somatic gene mutations in penile squamous cell carcinoma. Genes Chromosom Cancer 54(10):629–637. CrossRefPubMedGoogle Scholar
  25. 25.
    Hartz JM, Engelmann D, Furst K, Marquardt S, Spitschak A, Goody D, Protzel C, Hakenberg OW, Putzer BM (2016) Integrated loss of miR-1/miR-101/miR-204 discriminates metastatic from nonmetastatic penile carcinomas and can predict patient outcome. J Urol 196(2):570–578. CrossRefPubMedGoogle Scholar
  26. 26.
    Kuasne H, Colus IM, Busso AF, Hernandez-Vargas H, Barros-Filho MC, Marchi FA, Scapulatempo-Neto C, Faria EF, Lopes A, Guimaraes GC, Herceg Z, Rogatto SR (2015) Genome-wide methylation and transcriptome analysis in penile carcinoma: uncovering new molecular markers. Clin Epigenetics 7:46. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kroon BK, Leijte JA, van Boven H, Wessels LF, Velds A, Horenblas S, van’t Veer LJ (2008) Microarray gene-expression profiling to predict lymph node metastasis in penile carcinoma. BJU Int 102(4):510–515. CrossRefPubMedGoogle Scholar
  28. 28.
    Marchi FA, Martins DC, Barros-Filho MC, Kuasne H, Busso Lopes AF, Brentani H, Trindade Filho JCS, Guimaraes GC, Faria EF, Scapulatempo-Neto C, Lopes A, Rogatto SR (2017) Multidimensional integrative analysis uncovers driver candidates and biomarkers in penile carcinoma. Sci Rep 7(1):6707. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    McDaniel AS, Hovelson DH, Cani AK, Liu CJ, Zhai Y, Zhang Y, Weizer AZ, Mehra R, Feng FY, Alva AS, Morgan TM, Montgomery JS, Siddiqui J, Sadis S, Bandla S, Williams PD, Cho KR, Rhodes DR, Tomlins SA (2015) Genomic profiling of penile squamous cell carcinoma reveals new opportunities for targeted therapy. Cancer Res 75(24):5219–5227. CrossRefPubMedGoogle Scholar
  30. 30.
    Zhang L, Wei P, Shen X, Zhang Y, Xu B, Zhou J, Fan S, Hao Z, Shi H, Zhang X, Kong R, Xu L, Gao J, Zou D, Liang C (2015) MicroRNA expression profile in penile cancer revealed by next-generation small RNA sequencing. PLoS One 10(7):e0131336. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Alves G, Heller A, Fiedler W, Campos MM, Claussen U, Ornellas AA, Liehr T (2001) Genetic imbalances in 26 cases of penile squamous cell carcinoma. Genes Chromosom Cancer 31(1):48–53. CrossRefPubMedGoogle Scholar
  32. 32.
    Baskin LS, Sutherland RS, DiSandro MJ, Hayward SW, Lipschutz J, Cunha GR (1997) The effect of testosterone on androgen receptors and human penile growth. J Urol 158(3 Pt 2):1113–1118CrossRefGoogle Scholar
  33. 33.
    Antonarakis ES, Armstrong AJ, Dehm SM, Luo J (2016) Androgen receptor variant-driven prostate cancer: clinical implications and therapeutic targeting. Prostate Cancer Prostatic Dis 19(3):231–241. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhan Y, Zhang G, Wang X, Qi Y, Bai S, Li D, Ma T, Sartor O, Flemington EK, Zhang H, Lee P, Dong Y (2017) Interplay between cytoplasmic and nuclear androgen receptor splice variants mediates castration resistance. Mol Cancer Res 15(1):59–68. CrossRefPubMedGoogle Scholar
  35. 35.
    Cutress ML, Whitaker HC, Mills IG, Stewart M, Neal DE (2008) Structural basis for the nuclear import of the human androgen receptor. J Cell Sci 121(Pt 7):957–968. CrossRefPubMedGoogle Scholar
  36. 36.
    Lu C, Luo J (2013) Decoding the androgen receptor splice variants. Transl Androl Urol 2(3):178–186. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Luo J (2016) Development of AR-V7 as a putative treatment selection marker for metastatic castration-resistant prostate cancer. Asian J Androl 18(4):580–585. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Campos RS, Lopes A, Guimaraes GC, Carvalho AL, Soares FA (2006) E-cadherin, MMP-2, and MMP-9 as prognostic markers in penile cancer: analysis of 125 patients. Urology 67(4):797–802. CrossRefPubMedGoogle Scholar
  39. 39.
    Termini L, Fregnani JH, Boccardo E, da Costa WH, Longatto-Filho A, Andreoli MA, Costa MC, Lopes A, da Cunha IW, Soares FA, Villa LL, Guimaraes GC (2015) SOD2 immunoexpression predicts lymph node metastasis in penile cancer. BMC Clin Pathol 15:3. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Li H, Wang Z, Tang K, Zhou H, Liu H, Yan L, Guan W, Chen K, Xu H, Ye Z (2017) Prognostic value of androgen receptor splice variant 7 in the treatment of castration-resistant prostate cancer with next generation androgen receptor signal inhibition: a systematic review and meta-analysis. Eur Urol Focus.
  41. 41.
    Hornberg E, Ylitalo EB, Crnalic S, Antti H, Stattin P, Widmark A, Bergh A, Wikstrom P (2011) Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival. PLoS One 6(4):e19059. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Guo Z, Yang X, Sun F, Jiang R, Linn DE, Chen H, Chen H, Kong X, Melamed J, Tepper CG, Kung HJ, Brodie AM, Edwards J, Qiu Y (2009) A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 69(6):2305–2313. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Munoz JJ, Drigo SA, Kuasne H, Villacis RA, Marchi FA, Domingues MA, Lopes A, Santos TG, Rogatto SR (2016) A comprehensive characterization of cell cultures and xenografts derived from a human verrucous penile carcinoma. Tumour Biol 37(8):11375–11384. CrossRefPubMedGoogle Scholar
  44. 44.
    Cubilla AL, Velazquez EF, Amin MB, Epstein J, Berney DM, Corbishley CM, Members of the IPTP (2018) The World Health Organisation 2016 classification of penile carcinomas: a review and update from the International Society of Urological Pathology expert-driven recommendations. Histopathology 72(6):893–904. CrossRefPubMedGoogle Scholar
  45. 45.
    Backes DM, Kurman RJ, Pimenta JM, Smith JS (2009) Systematic review of human papillomavirus prevalence in invasive penile cancer. Cancer Causes Control 20(4):449–457. CrossRefPubMedGoogle Scholar
  46. 46.
    Rubin MA, Kleter B, Zhou M, Ayala G, Cubilla AL, Quint WG, Pirog EC (2001) Detection and typing of human papillomavirus DNA in penile carcinoma: evidence for multiple independent pathways of penile carcinogenesis. Am J Pathol 159(4):1211–1218. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Do HT, Koriyama C, Khan NA, Higashi M, Kato T, Le NT, Matsushita S, Kanekura T, Akiba S (2013) The etiologic role of human papillomavirus in penile cancers: a study in Vietnam. Br J Cancer 108(1):229–233. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    El-Naggar AK, Westra WH (2012) p16 expression as a surrogate marker for HPV-related oropharyngeal carcinoma: a guide for interpretative relevance and consistency. Head Neck 34(4):459–461. CrossRefPubMedGoogle Scholar
  49. 49.
    Prigge ES, Arbyn M, von Knebel Doeberitz M, Reuschenbach M (2017) Diagnostic accuracy of p16(INK4a) immunohistochemistry in oropharyngeal squamous cell carcinomas: a systematic review and meta-analysis. Int J Cancer 140(5):1186–1198. CrossRefPubMedGoogle Scholar
  50. 50.
    Cubilla AL, Lloveras B, Alejo M, Clavero O, Chaux A, Kasamatsu E, Monfulleda N, Tous S, Alemany L, Klaustermeier J, Munoz N, Quint W, de Sanjose S, Bosch FX (2011) Value of p16(INK)(4)(a) in the pathology of invasive penile squamous cell carcinomas: a report of 202 cases. Am J Surg Pathol 35(2):253–261. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hellen Kuasne
    • 1
    • 2
  • Mateus C. Barros-Filho
    • 2
  • Fábio A. Marchi
    • 2
  • Sandra A. Drigo
    • 3
  • Cristovam Scapulatempo-Neto
    • 4
  • Eliney F. Faria
    • 5
  • Silvia R. Rogatto
    • 6
    Email author
  1. 1.Department of Urology, Faculty of MedicineSão Paulo State University – UNESPBotucatuBrazil
  2. 2.CIPE - A.C. Camargo Cancer CenterSão PauloBrazil
  3. 3.Department of Surgery and Orthopedics and Department of Veterinary ClinicSchool of Veterinary Medicine and Animal Science, UNESPBotucatuBrazil
  4. 4.Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos and Diagnósticos da América (DASA)São PauloBrazil
  5. 5.Department of UrologyBarretos Cancer HospitalBarretosBrazil
  6. 6.Department of Clinical Genetics, Vejle Hospital, Institute of Regional Health ResearchUniversity of Southern DenmarkVejleDenmark

Personalised recommendations