Advertisement

Integrating histopathology, immune biomarkers, and molecular subgroups in solid cancer: the next step in precision oncology

  • Nicolas A. GiraldoEmail author
  • J. David Peske
  • Catherine Sautès-Fridman
  • Wolf H. Fridman
Review Article

Abstract

For many years, the gold standard cancer grading and staging had focused on the characteristics of the cancer cells and often disregarded the non-tumoral cell compartments. The expansion of research on the tumor immune microenvironment, the successes and dissemination of immunotherapies to treat cancer, and the open access to large -omic databases have allowed the development of novel powerful immune-based prognostic and theranostic biomarkers. Although they often correlate with histopathologic characteristics and TNM staging, in many instances, they are independently associated with, and potentially superior predictors of, the patient’s prognosis and response to immunotherapies. As pathologists in the era of precision medicine, we are uniquely positioned to participate in the integration of these histologic and molecular features of the tumor microenvironment to provide the best prognostic information to clinicians and patients. In this review, we summarize some of the most important immune-related prognostic biomarkers in solid cancer, how they integrate with traditional histopathologic (i.e., staging and grading) and novel molecular stratification systems, and their potential role as predictors to response to agents blocking the PD-1/PD-L1 axis.

Keywords

Tumor immune microenvironment Biomarkers Molecular subgroups Immune checkpoints 

Notes

Fundings

This work was supported by the Institut National de la santé et de la Recherche Medicale (INSERM), University Paris-Descartes, University Pierre and Marie Curie, the Site de Recherche Integrée sur le Cancer (SIRIC) Cancer Research for Personalized Medicine (CARPEM) program, the LabEx Immuno-Oncology (LAXE62_9UMRS972 FRIDMAN), the Institut National Du Cancer (INCa, HTE program), and the Cancéropôle Ile-de-France, O. Lecomte.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Burke HB (2004) Outcome prediction and the future of the TNM staging system. J Natl Cancer Inst 96:1408–1409.  https://doi.org/10.1093/jnci/djh293 CrossRefPubMedGoogle Scholar
  2. 2.
    Brenner H, Kloor M, Pox CP (2014) Colorectal cancer. Lancet 383:1490–1502.  https://doi.org/10.1016/S0140-6736(13)61649-9 CrossRefGoogle Scholar
  3. 3.
    Delahunt B (2009) Advances and controversies in grading and staging of renal cell carcinoma. Mod Pathol 22(Suppl 2):S24–S36.  https://doi.org/10.1038/modpathol.2008.183 CrossRefPubMedGoogle Scholar
  4. 4.
    Dickson PV, Gershenwald JE (2011) Staging and prognosis of cutaneous melanoma. Surg Oncol Clin N Am 20:1–17.  https://doi.org/10.1016/j.soc.2010.09.007 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Richards CH, Mohammed Z, Qayyum T et al (2011) The prognostic value of histological tumor necrosis in solid organ malignant disease: a systematic review. Future Oncol 7:1223–1235.  https://doi.org/10.2217/fon.11.99 CrossRefPubMedGoogle Scholar
  6. 6.
    Yuan H, Dong Q, Zheng B et al (2017) Lymphovascular invasion is a high risk factor for stage I/II colorectal cancer: a systematic review and meta-analysis. Oncotarget 8:46565–46579.  https://doi.org/10.18632/oncotarget.15425 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Mouallem NE, Smith SC, Paul AK (2018) Sarcomatoid renal cell carcinoma: biology and treatment advances. Urol Oncol 36:265–271.  https://doi.org/10.1016/j.urolonc.2017.12.012 CrossRefPubMedGoogle Scholar
  8. 8.
    Giraldo NA, Becht E, Remark R, Damotte D, Sautès-Fridman C, Fridman WH (2014) The immune contexture of primary and metastatic human tumours. Curr Opin Immunol 27:8–15.  https://doi.org/10.1016/j.coi.2014.01.001 CrossRefPubMedGoogle Scholar
  9. 9.
    Giraldo NA, Becht E, Vano Y, Sautès-Fridman C, Fridman WH (2015) The immune response in cancer: from immunology to pathology to immunotherapy. Virchows Arch 467:127–135.  https://doi.org/10.1007/s00428-015-1787-7 CrossRefPubMedGoogle Scholar
  10. 10.
    Fridman WH, Zitvogel L, Sautès-Fridman C, Kroemer G (2017) The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol 14:717–734.  https://doi.org/10.1038/nrclinonc.2017.101 CrossRefPubMedGoogle Scholar
  11. 11.
    Xing F, Saidou J, Watabe K (2010) Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci J Virtual Libr 15:166–179CrossRefGoogle Scholar
  12. 12.
    Becht E, Giraldo NA, Germain C et al (2016) Immune contexture, immunoscore, and malignant cell molecular subgroups for prognostic and theranostic classifications of cancers. Adv Immunol 130:95–190.  https://doi.org/10.1016/bs.ai.2015.12.002 CrossRefPubMedGoogle Scholar
  13. 13.
    Becht E, Giraldo NA, Beuselinck B et al (2015) Prognostic and theranostic impact of molecular subtypes and immune classifications in renal cell cancer (RCC) and colorectal cancer (CRC). Oncoimmunology 4:e1049804.  https://doi.org/10.1080/2162402X.2015.1049804 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Beuselinck B, Job S, Becht E et al (2015) Molecular subtypes of clear cell renal cell carcinoma are associated with sunitinib response in the metastatic setting. Clin Cancer Res 21:1329–1339.  https://doi.org/10.1158/1078-0432.CCR-14-1128 CrossRefPubMedGoogle Scholar
  15. 15.
    Becht E, de Reyniès A, Giraldo NA, Pilati C, Buttard B, Lacroix L, Selves J, Sautès-Fridman C, Laurent-Puig P, Fridman WH (2016) Immune and stromal classification of colorectal cancer is associated with molecular subtypes and relevant for precision immunotherapy. Clin Cancer Res 22:4057–4066.  https://doi.org/10.1158/1078-0432.CCR-15-2879 CrossRefPubMedGoogle Scholar
  16. 16.
    Galon J, Mlecnik B, Marliot F, Ou FS, Bifulco CB, Lugli A, Zlobec I, Rau TT, Hartmann A, Masucci GV, Zavadova E, Ohashi P, Roehrl MHA, Kawakami Y, Torigoe T, Ascierto PA, Marincola F, Sargent DJ, Fox BA, Pages F (2016) Validation of the immunoscore (IM) as a prognostic marker in stage I/II/III colon cancer: results of a worldwide consortium-based analysis of 1,336 patients. J Clin Oncol 34:3500–3500.  https://doi.org/10.1200/JCO.2016.34.15_suppl.3500 CrossRefGoogle Scholar
  17. 17.
    Iwasaki A, Medzhitov R (2015) Control of adaptive immunity by the innate immune system. Nat Immunol 16:343–353.  https://doi.org/10.1038/ni.3123 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gajewski TF, Schreiber H, Fu Y-X (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14:1014–1022.  https://doi.org/10.1038/ni.2703 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Pillay J, den Braber I, Vrisekoop N, Kwast LM, de Boer RJ, Borghans JAM, Tesselaar K, Koenderman L (2010) In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood 116:625–627.  https://doi.org/10.1182/blood-2010-01-259028 CrossRefGoogle Scholar
  20. 20.
    Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175.  https://doi.org/10.1038/nri3399 CrossRefGoogle Scholar
  21. 21.
    Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16:183–194.  https://doi.org/10.1016/j.ccr.2009.06.017 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tecchio C, Micheletti A, Cassatella MA (2014) Neutrophil-derived cytokines: facts beyond expression. Front Immunol 5.  https://doi.org/10.3389/fimmu.2014.00508
  23. 23.
    Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14:399–416.  https://doi.org/10.1038/nrclinonc.2016.217 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cerwenka A, Lanier LL (2016) Natural killer cell memory in infection, inflammation and cancer. Nat Rev Immunol 16:112–123.  https://doi.org/10.1038/nri.2015.9 CrossRefPubMedGoogle Scholar
  25. 25.
    Garcia-Lora A, Algarra I, Garrido F (2003) MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol 195:346–355.  https://doi.org/10.1002/jcp.10290 CrossRefPubMedGoogle Scholar
  26. 26.
    Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12:265–277.  https://doi.org/10.1038/nrc3258 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Josefowicz SZ, Lu L-F, Rudensky AY (2012) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531–564.  https://doi.org/10.1146/annurev.immunol.25.022106.141623 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Dieu-Nosjean M-C, Giraldo NA, Kaplon H, Germain C, Fridman WH, Sautès-Fridman C (2016) Tertiary lymphoid structures, drivers of the anti-tumor responses in human cancers. Immunol Rev 271:260–275.  https://doi.org/10.1111/imr.12405 CrossRefPubMedGoogle Scholar
  29. 29.
    Paul WE (2011) Bridging innate and adaptive immunity. Cell 147:1212–1215.  https://doi.org/10.1016/j.cell.2011.11.036 CrossRefPubMedGoogle Scholar
  30. 30.
    Durgeau A, Virk Y, Corgnac S, Mami-Chouaib F (2018) Recent advances in targeting CD8 T-cell immunity for more effective cancer immunotherapy. Front Immunol 9.  https://doi.org/10.3389/fimmu.2018.00014
  31. 31.
    Bluestone JA, Mackay CR, O’Shea JJ, Stockinger B (2009) The functional plasticity of T cell subsets. Nat Rev Immunol 9:811–816.  https://doi.org/10.1038/nri2654 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations. Annu Rev Immunol 28:445–489.  https://doi.org/10.1146/annurev-immunol-030409-101212 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Tanaka A, Sakaguchi S (2017) Regulatory T cells in cancer immunotherapy. Cell Res 27:109–118.  https://doi.org/10.1038/cr.2016.151 CrossRefPubMedGoogle Scholar
  34. 34.
    B lymphocytes and cancer: a love-hate relationship. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472356/. Accessed 17 Oct 2018
  35. 35.
    Fridman WH, Pagès F, Sautès-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306.  https://doi.org/10.1038/nrc3245 CrossRefPubMedGoogle Scholar
  36. 36.
    Jensen HK, Donskov F, Marcussen N, Nordsmark M, Lundbeck F, von der Maase H (2009) Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma. J Clin Oncol Off J Am Soc Clin Oncol 27:4709–4717.  https://doi.org/10.1200/JCO.2008.18.9498 CrossRefGoogle Scholar
  37. 37.
    Trellakis S, Bruderek K, Dumitru CA, Gholaman H, Gu X, Bankfalvi A, Scherag A, Hütte J, Dominas N, Lehnerdt GF, Hoffmann TK, Lang S, Brandau S (2011) Polymorphonuclear granulocytes in human head and neck cancer: enhanced inflammatory activity, modulation by cancer cells and expansion in advanced disease. Int J Cancer 129:2183–2193.  https://doi.org/10.1002/ijc.25892 CrossRefPubMedGoogle Scholar
  38. 38.
    Wang J, Jia Y, Wang N, Zhang X, Tan B, Zhang G, Cheng Y (2014) The clinical significance of tumor-infiltrating neutrophils and neutrophil-to-CD8+ lymphocyte ratio in patients with resectable esophageal squamous cell carcinoma. J Transl Med 12:7.  https://doi.org/10.1186/1479-5876-12-7 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Liu H, Zhang T, Ye J, Li H, Huang J, Li X, Wu B, Huang X, Hou J (2012) Tumor-infiltrating lymphocytes predict response to chemotherapy in patients with advance non-small cell lung cancer. Cancer Immunol Immunother 61:1849–1856.  https://doi.org/10.1007/s00262-012-1231-7 CrossRefPubMedGoogle Scholar
  40. 40.
    Caruso RA, Bellocco R, Pagano M et al (2002) Prognostic value of intratumoral neutrophils in advanced gastric carcinoma in a high-risk area in northern Italy. Mod Pathol 15:831–837.  https://doi.org/10.1097/01.MP.0000020391.98998.6B CrossRefPubMedGoogle Scholar
  41. 41.
    Galdiero MR, Bianchi P, Grizzi F, di Caro G, Basso G, Ponzetta A, Bonavita E, Barbagallo M, Tartari S, Polentarutti N, Malesci A, Marone G, Roncalli M, Laghi L, Garlanda C, Mantovani A, Jaillon S (2016) Occurrence and significance of tumor-associated neutrophils in patients with colorectal cancer. Int J Cancer 139:446–456.  https://doi.org/10.1002/ijc.30076 CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang H, Liu H, Shen Z et al (2018) Tumor-infiltrating neutrophils is prognostic and predictive for postoperative adjuvant chemotherapy benefit in patients with gastric cancer. Ann Surg 267:311.  https://doi.org/10.1097/SLA.0000000000002058 CrossRefPubMedGoogle Scholar
  43. 43.
    Zhang Q, Liu L, Gong C et al (2012) Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS One 7:e50946.  https://doi.org/10.1371/journal.pone.0050946 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Muris JJF, Meijer CJLM, Cillessen S a GM et al (2004) Prognostic significance of activated cytotoxic T-lymphocytes in primary nodal diffuse large B-cell lymphomas. Leukemia 18:589–596.  https://doi.org/10.1038/sj.leu.2403240 CrossRefPubMedGoogle Scholar
  45. 45.
    Scott DW, Chan FC, Hong F, Rogic S, Tan KL, Meissner B, Ben-Neriah S, Boyle M, Kridel R, Telenius A, Woolcock BW, Farinha P, Fisher RI, Rimsza LM, Bartlett NL, Cheson BD, Shepherd LE, Advani RH, Connors JM, Kahl BS, Gordon LI, Horning SJ, Steidl C, Gascoyne RD (2013) Gene expression-based model using formalin-fixed paraffin-embedded biopsies predicts overall survival in advanced-stage classical Hodgkin lymphoma. J Clin Oncol Off J Am Soc Clin Oncol 31:692–700.  https://doi.org/10.1200/JCO.2012.43.4589 CrossRefGoogle Scholar
  46. 46.
    Giraldo NA, Becht E, Pagès F et al (2015) Orchestration and prognostic significance of immune checkpoints in the microenvironment of primary and metastatic renal cell cancer. Clin Cancer Res 21:3031–3040.  https://doi.org/10.1158/1078-0432.CCR-14-2926 CrossRefPubMedGoogle Scholar
  47. 47.
    Giraldo NA, Becht E, Vano Y, Petitprez F, Lacroix L, Validire P, Sanchez-Salas R, Ingels A, Oudard S, Moatti A, Buttard B, Bourass S, Germain C, Cathelineau X, Fridman WH, Sautès-Fridman C (2017) Tumor-infiltrating and peripheral blood T-cell immunophenotypes predict early relapse in localized clear cell renal cell carcinoma. Clin Cancer Res 23:4416–4428.  https://doi.org/10.1158/1078-0432.CCR-16-2848 CrossRefPubMedGoogle Scholar
  48. 48.
    Mahmoud SMA, Paish EC, Powe DG et al (2011) Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol 29:1949–1955.  https://doi.org/10.1200/JCO.2010.30.5037 CrossRefPubMedGoogle Scholar
  49. 49.
    Mohamed Z, Pinato DJ, Mauri FA, Chen KW, Chang PMH, Sharma R (2014) Inflammation as a validated prognostic determinant in carcinoma of unknown primary site. Br J Cancer 110:208–213.  https://doi.org/10.1038/bjc.2013.683 CrossRefPubMedGoogle Scholar
  50. 50.
    Mella M, Kauppila JH, Karihtala P, Lehenkari P, Jukkola-Vuorinen A, Soini Y, Auvinen P, Vaarala MH, Ronkainen H, Kauppila S, Haapasaari KM, Vuopala KS, Selander KS (2015) Tumor infiltrating CD8+ T lymphocyte count is independent of tumor TLR9 status in treatment naïve triple negative breast cancer and renal cell carcinoma. Oncoimmunology 4:e1002726.  https://doi.org/10.1080/2162402X.2014.1002726 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Dieci MV, Mathieu MC, Guarneri V, Conte P, Delaloge S, Andre F, Goubar A (2015) Prognostic and predictive value of tumor-infiltrating lymphocytes in two phase III randomized adjuvant breast cancer trials. Ann Oncol 26:1698–1704.  https://doi.org/10.1093/annonc/mdv239 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Lee HJ, Park IA, Song IH et al (2016) Tertiary lymphoid structures: prognostic significance and relationship with tumour-infiltrating lymphocytes in triple-negative breast cancer. J Clin Pathol 69:422–430.  https://doi.org/10.1136/jclinpath-2015-203089 CrossRefPubMedGoogle Scholar
  53. 53.
    Dieci MV, Frassoldati A, Generali D et al (2017) Tumor-infiltrating lymphocytes and molecular response after neoadjuvant therapy for HR+/HER2- breast cancer: results from two prospective trials. Breast Cancer Res Treat 163:295–302.  https://doi.org/10.1007/s10549-017-4191-y CrossRefPubMedGoogle Scholar
  54. 54.
    Krishnamurti U, Wetherilt CS, Yang J, Peng L, Li X (2017) Tumor-infiltrating lymphocytes are significantly associated with better overall survival and disease-free survival in triple-negative but not estrogen receptor-positive breast cancers. Hum Pathol 64:7–12.  https://doi.org/10.1016/j.humpath.2017.01.004 CrossRefPubMedGoogle Scholar
  55. 55.
    Huszno J, Nożyńska EZ, Lange D, Kołosza Z, Nowara E (2017) The association of tumor lymphocyte infiltration with clinicopathological factors and survival in breast cancer. Pol J Pathol 68:26–32.  https://doi.org/10.5114/pjp.2017.67612 CrossRefPubMedGoogle Scholar
  56. 56.
    Pruneri G, Vingiani A, Bagnardi V, Rotmensz N, de Rose A, Palazzo A, Colleoni AM, Goldhirsch A, Viale G (2016) Clinical validity of tumor-infiltrating lymphocytes analysis in patients with triple-negative breast cancer. Ann Oncol 27:249–256.  https://doi.org/10.1093/annonc/mdv571 CrossRefPubMedGoogle Scholar
  57. 57.
  58. 58.
    Taylor RC, Patel A, Panageas KS, Busam KJ, Brady MS (2007) Tumor-infiltrating lymphocytes predict sentinel lymph node positivity in patients with cutaneous melanoma. J Clin Oncol Off J Am Soc Clin Oncol 25:869–875.  https://doi.org/10.1200/JCO.2006.08.9755 CrossRefGoogle Scholar
  59. 59.
    Azimi F, Scolyer RA, Rumcheva P et al (2012) Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. J Clin Oncol Off J Am Soc Clin Oncol 30:2678–2683.  https://doi.org/10.1200/JCO.2011.37.8539 CrossRefGoogle Scholar
  60. 60.
    Thomas NE, Busam KJ, From L, Kricker A, Armstrong BK, Anton-Culver H, Gruber SB, Gallagher RP, Zanetti R, Rosso S, Dwyer T, Venn A, Kanetsky PA, Groben PA, Hao H, Orlow I, Reiner AS, Luo L, Paine S, Ollila DW, Wilcox H, Begg CB, Berwick M (2013) Tumor-infiltrating lymphocyte grade in primary melanomas is independently associated with melanoma-specific survival in the population-based genes, environment and melanoma study. J Clin Oncol 31:4252–4259.  https://doi.org/10.1200/JCO.2013.51.3002 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Hillen F, Baeten CIM, van de Winkel A, Creytens D, van der Schaft DWJ, Winnepenninckx V, Griffioen AW (2008) Leukocyte infiltration and tumor cell plasticity are parameters of aggressiveness in primary cutaneous melanoma. Cancer Immunol Immunother 57:97–106.  https://doi.org/10.1007/s00262-007-0353-9 CrossRefPubMedGoogle Scholar
  62. 62.
    Galon J, Mlecnik B, Bindea G, Angell HK, Berger A, Lagorce C, Lugli A, Zlobec I, Hartmann A, Bifulco C, Nagtegaal ID, Palmqvist R, Masucci GV, Botti G, Tatangelo F, Delrio P, Maio M, Laghi L, Grizzi F, Asslaber M, D’Arrigo C, Vidal-Vanaclocha F, Zavadova E, Chouchane L, Ohashi PS, Hafezi-Bakhtiari S, Wouters BG, Roehrl M, Nguyen L, Kawakami Y, Hazama S, Okuno K, Ogino S, Gibbs P, Waring P, Sato N, Torigoe T, Itoh K, Patel PS, Shukla SN, Wang Y, Kopetz S, Sinicrope FA, Scripcariu V, Ascierto PA, Marincola FM, Fox BA, Pagès F (2014) Towards the introduction of the “Immunoscore” in the classification of malignant tumours. J Pathol 232:199–209.  https://doi.org/10.1002/path.4287 CrossRefPubMedGoogle Scholar
  63. 63.
    Taube JM, Galon J, Sholl LM, Rodig SJ, Cottrell TR, Giraldo NA, Baras AS, Patel SS, Anders RA, Rimm DL, Cimino-Mathews A (2017) Implications of the tumor immune microenvironment for staging and therapeutics. Mod Pathol 31:214–234.  https://doi.org/10.1038/modpathol.2017.156 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Pagès F, Mlecnik B, Marliot F et al (2018) International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 0.  https://doi.org/10.1016/S0140-6736(18)30789-X
  65. 65.
    Sinicrope FA, Rego RL, Ansell SM, Knutson KL, Foster NR, Sargent DJ (2009) Intraepithelial effector (CD3+)/regulatory (FoxP3+) T-cell ratio predicts a clinical outcome of human colon carcinoma. Gastroenterology 137:1270–1279.  https://doi.org/10.1053/j.gastro.2009.06.053 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Ling A, Edin S, Wikberg ML, Öberg Å, Palmqvist R (2014) The intratumoural subsite and relation of CD8+ and FOXP3+ T lymphocytes in colorectal cancer provide important prognostic clues. Br J Cancer 110:2551–2559.  https://doi.org/10.1038/bjc.2014.161 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Petitprez F, Vano YA, Becht E, Giraldo NA, de Reyniès A, Sautès-Fridman C, Fridman WH (2018) Transcriptomic analysis of the tumor microenvironment to guide prognosis and immunotherapies. Cancer Immunol Immunother 67:981–988.  https://doi.org/10.1007/s00262-017-2058-z CrossRefPubMedGoogle Scholar
  68. 68.
    Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino P, Bot BM, Morris JS, Simon IM, Gerster S, Fessler E, de Sousa E Melo F, Missiaglia E, Ramay H, Barras D, Homicsko K, Maru D, Manyam GC, Broom B, Boige V, Perez-Villamil B, Laderas T, Salazar R, Gray JW, Hanahan D, Tabernero J, Bernards R, Friend SH, Laurent-Puig P, Medema JP, Sadanandam A, Wessels L, Delorenzi M, Kopetz S, Vermeulen L, Tejpar S (2015) The consensus molecular subtypes of colorectal cancer. Nat Med 21:1350–1356.  https://doi.org/10.1038/nm.3967 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Hoadley KA, Yau C, Hinoue T et al (2018) Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173:291–304.e6.  https://doi.org/10.1016/j.cell.2018.03.022 CrossRefPubMedGoogle Scholar
  70. 70.
    Thorsson V, Gibbs DL, Brown SD et al (2018) The immune landscape of cancer. Immunity 48:812–830.e14.  https://doi.org/10.1016/j.immuni.2018.03.023 CrossRefPubMedGoogle Scholar
  71. 71.
    Sheppard K-A, Fitz LJ, Lee JM, Benander C, George JA, Wooters J, Qiu Y, Jussif JM, Carter LL, Wood CR, Chaudhary D (2004) PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett 574:37–41.  https://doi.org/10.1016/j.febslet.2004.07.083 CrossRefPubMedGoogle Scholar
  72. 72.
    Patsoukis N, Brown J, Petkova V, Liu F, Li L, Boussiotis VA (2012) Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci Signal 5:ra46.  https://doi.org/10.1126/scisignal.2002796 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Wei F, Zhong S, Ma Z, Kong H, Medvec A, Ahmed R, Freeman GJ, Krogsgaard M, Riley JL (2013) Strength of PD-1 signaling differentially affects T-cell effector functions. Proc Natl Acad Sci U S A 110:E2480–E2489.  https://doi.org/10.1073/pnas.1305394110 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287.  https://doi.org/10.1038/nrc.2016.36 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Giraldo NA, Taube JM (2018) PD-L1 and other immunological diagnosis tools. In: Oncoimmunology. Springer, Cham, pp 371–385CrossRefGoogle Scholar
  76. 76.
    Chen P-L, Roh W, Reuben A, et al (2016) Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov CD-15-1545.  https://doi.org/10.1158/2159-8290.CD-15-1545
  77. 77.
    Tumeh PC, Harview CL, Yearley JH et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571.  https://doi.org/10.1038/nature13954 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Le DT, Uram JN, Wang H et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372:2509–2520.  https://doi.org/10.1056/NEJMoa1500596 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    McDermott DF, Sosman JA, Sznol M et al (2016) Atezolizumab, an anti-programmed death-ligand 1 antibody, in metastatic renal cell carcinoma: long-term safety, clinical activity, and immune correlates from a phase Ia study. J Clin Oncol Off J Am Soc Clin Oncol 34:833–842.  https://doi.org/10.1200/JCO.2015.63.7421 CrossRefGoogle Scholar
  80. 80.
    Taube JM, Young GD, McMiller TL et al (2015) Differential expression of immune-regulatory genes associated with PD-L1 display in melanoma: implications for PD-1 pathway blockade. Clin Cancer Res 21:3969–3976.  https://doi.org/10.1158/1078-0432.CCR-15-0244 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454.  https://doi.org/10.1056/NEJMoa1200690 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Herbst RS, Soria J-C, Kowanetz M et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567.  https://doi.org/10.1038/nature14011 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Gettinger S, Rizvi NA, Chow LQ, Borghaei H, Brahmer J, Ready N, Gerber DE, Shepherd FA, Antonia S, Goldman JW, Juergens RA, Laurie SA, Nathan FE, Shen Y, Harbison CT, Hellmann MD (2016) Nivolumab monotherapy for first-line treatment of advanced non-small-cell lung cancer. J Clin Oncol Off J Am Soc Clin Oncol 34:2980–2987.  https://doi.org/10.1200/JCO.2016.66.9929 CrossRefGoogle Scholar
  84. 84.
    Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, Barlesi F, Kohlhäufl M, Arrieta O, Burgio MA, Fayette J, Lena H, Poddubskaya E, Gerber DE, Gettinger SN, Rudin CM, Rizvi N, Crinò L, Blumenschein GR Jr, Antonia SJ, Dorange C, Harbison CT, Graf Finckenstein F, Brahmer JR (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–1639.  https://doi.org/10.1056/NEJMoa1507643 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, Waterhouse D, Ready N, Gainor J, Arén Frontera O, Havel L, Steins M, Garassino MC, Aerts JG, Domine M, Paz-Ares L, Reck M, Baudelet C, Harbison CT, Lestini B, Spigel DR (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373:123–135.  https://doi.org/10.1056/NEJMoa1504627 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Gettinger SN, Horn L, Gandhi L et al (2015) Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol Off J Am Soc Clin Oncol 33:2004–2012.  https://doi.org/10.1200/JCO.2014.58.3708 CrossRefGoogle Scholar
  87. 87.
    Rizvi NA, Mazières J, Planchard D et al (2015) Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol 16:257–265.  https://doi.org/10.1016/S1470-2045(15)70054-9 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Herbst RS, Baas P, Kim D-W, Felip E, Pérez-Gracia JL, Han JY, Molina J, Kim JH, Arvis CD, Ahn MJ, Majem M, Fidler MJ, de Castro G Jr, Garrido M, Lubiniecki GM, Shentu Y, Im E, Dolled-Filhart M, Garon EB (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387:1540–1550.  https://doi.org/10.1016/S0140-6736(15)01281-7 CrossRefPubMedGoogle Scholar
  89. 89.
    Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, Carcereny E, Ahn MJ, Felip E, Lee JS, Hellmann MD, Hamid O, Goldman JW, Soria JC, Dolled-Filhart M, Rutledge RZ, Zhang J, Lunceford JK, Rangwala R, Lubiniecki GM, Roach C, Emancipator K, Gandhi L, KEYNOTE-001 Investigators (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372:2018–2028.  https://doi.org/10.1056/NEJMoa1501824 CrossRefPubMedGoogle Scholar
  90. 90.
    Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, Park K, Smith D, Artal-Cortes A, Lewanski C, Braiteh F, Waterkamp D, He P, Zou W, Chen DS, Yi J, Sandler A, Rittmeyer A (2016) Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 387:1837–1846.  https://doi.org/10.1016/S0140-6736(16)00587-0 CrossRefPubMedGoogle Scholar
  91. 91.
    Gulley JL, Rajan A, Spigel DR, Iannotti N, Chandler J, DJL W, Leach J, Edenfield WJ, Wang D, Grote HJ, Heydebreck A, Chin K, Cuillerot JM, Kelly K (2017) Avelumab for patients with previously treated metastatic or recurrent non-small-cell lung cancer (JAVELIN Solid Tumor): dose-expansion cohort of a multicentre, open-label, phase 1b trial. Lancet Oncol 18:599–610.  https://doi.org/10.1016/S1470-2045(17)30240-1 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Sharma P, Callahan MK, Bono P et al (2016) Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): a multicentre, open-label, two-stage, multi-arm, phase 1/2 trial. Lancet Oncol 17:1590–1598.  https://doi.org/10.1016/S1470-2045(16)30496-X CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP, Bellmunt J, Loriot Y, Necchi A, Hoffman-Censits J, Perez-Gracia JL, Dawson NA, van der Heijden M, Dreicer R, Srinivas S, Retz MM, Joseph RW, Drakaki A, Vaishampayan UN, Sridhar SS, Quinn DI, Durán I, Shaffer DR, Eigl BJ, Grivas PD, Yu EY, Li S, Kadel EE 3rd, Boyd Z, Bourgon R, Hegde PS, Mariathasan S, Thåström A, Abidoye OO, Fine GD, Bajorin DF, IMvigor210 Study Group (2016) Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet 389:67–76.  https://doi.org/10.1016/S0140-6736(16)32455-2 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, Dawson N, O’Donnell PH, Balmanoukian A, Loriot Y, Srinivas S, Retz MM, Grivas P, Joseph RW, Galsky MD, Fleming MT, Petrylak DP, Perez-Gracia JL, Burris HA, Castellano D, Canil C, Bellmunt J, Bajorin D, Nickles D, Bourgon R, Frampton GM, Cui N, Mariathasan S, Abidoye O, Fine GD, Dreicer R (2016) Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387:1909–1920.  https://doi.org/10.1016/S0140-6736(16)00561-4 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, Bellmunt J, Burris HA, Petrylak DP, Teng SL, Shen X, Boyd Z, Hegde PS, Chen DS, Vogelzang NJ (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515:558–562.  https://doi.org/10.1038/nature13904 CrossRefGoogle Scholar
  96. 96.
    Massard C, Gordon MS, Sharma S et al (2016) Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J Clin Oncol Off J Am Soc Clin Oncol 34:3119–3125.  https://doi.org/10.1200/JCO.2016.67.9761 CrossRefGoogle Scholar
  97. 97.
    Powles T, O’Donnell PH, Massard C et al (2017) Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a phase 1/2 open-label study. JAMA Oncol 3:e172411–e172411.  https://doi.org/10.1001/jamaoncol.2017.2411 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Apolo AB, Infante JR, Balmanoukian A et al (2017) Avelumab, an anti-programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: results from a multicenter, phase Ib study. J Clin Oncol 35:2117–2124.  https://doi.org/10.1200/JCO.2016.71.6795 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Motzer RJ, Rini BI, McDermott DF et al (2015) Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J Clin Oncol Off J Am Soc Clin Oncol 33:1430–1437.  https://doi.org/10.1200/JCO.2014.59.0703 CrossRefGoogle Scholar
  100. 100.
    Larkin J, Hodi FS, Wolchok JD (2015) Combined Nivolumab and Ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373:1270–1271.  https://doi.org/10.1056/NEJMc1509660 CrossRefGoogle Scholar
  101. 101.
    Weber JS, D’Angelo SP, Minor D et al (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16:375–384.  https://doi.org/10.1016/S1470-2045(15)70076-8 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E, Savage KJ, Hernberg MM, Lebbé C, Charles J, Mihalcioiu C, Chiarion-Sileni V, Mauch C, Cognetti F, Arance A, Schmidt H, Schadendorf D, Gogas H, Lundgren-Eriksson L, Horak C, Sharkey B, Waxman IM, Atkinson V, Ascierto PA (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330.  https://doi.org/10.1056/NEJMoa1412082 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Weber JS, Kudchadkar RR, Yu B, Gallenstein D, Horak CE, Inzunza HD, Zhao X, Martinez AJ, Wang W, Gibney G, Kroeger J, Eysmans C, Sarnaik AA, Chen YA (2013) Safety, efficacy, and biomarkers of nivolumab with vaccine in ipilimumab-refractory or -naive melanoma. J Clin Oncol Off J Am Soc Clin Oncol 31:4311–4318.  https://doi.org/10.1200/JCO.2013.51.4802 CrossRefGoogle Scholar
  104. 104.
    Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, Lao CD, Wagstaff J, Schadendorf D, Ferrucci PF, Smylie M, Dummer R, Hill A, Hogg D, Haanen J, Carlino MS, Bechter O, Maio M, Marquez-Rodas I, Guidoboni M, McArthur G, Lebbé C, Ascierto PA, Long GV, Cebon J, Sosman J, Postow MA, Callahan MK, Walker D, Rollin L, Bhore R, Hodi FS, Larkin J (2017) Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 377:1345–1356.  https://doi.org/10.1056/NEJMoa1709684 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Chow LQM, Haddad R, Gupta S et al (2016) Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib KEYNOTE-012 expansion cohort. J Clin Oncol Off J Am Soc Clin Oncol.  https://doi.org/10.1200/JCO.2016.68.1478
  106. 106.
    Muro K, Chung HC, Shankaran V et al (2016) Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol 17:717–726.  https://doi.org/10.1016/S1470-2045(16)00175-3 CrossRefPubMedGoogle Scholar
  107. 107.
    Nghiem PT, Bhatia S, Lipson EJ, Kudchadkar RR, Miller NJ, Annamalai L, Berry S, Chartash EK, Daud A, Fling SP, Friedlander PA, Kluger HM, Kohrt HE, Lundgren L, Margolin K, Mitchell A, Olencki T, Pardoll DM, Reddy SA, Shantha EM, Sharfman WH, Sharon E, Shemanski LR, Shinohara MM, Sunshine JC, Taube JM, Thompson JA, Townson SM, Yearley JH, Topalian SL, Cheever MA (2016) PD-1 blockade with pembrolizumab in advanced Merkel-cell carcinoma. N Engl J Med 374:2542–2552.  https://doi.org/10.1056/NEJMoa1603702 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Kaufman HL, Russell J, Hamid O, Bhatia S, Terheyden P, D’Angelo SP, Shih KC, Lebbé C, Linette GP, Milella M, Brownell I, Lewis KD, Lorch JH, Chin K, Mahnke L, von Heydebreck A, Cuillerot JM, Nghiem P (2016) Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol 17:1374–1385.  https://doi.org/10.1016/S1470-2045(16)30364-3 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nicolas A. Giraldo
    • 1
    Email author
  • J. David Peske
    • 1
  • Catherine Sautès-Fridman
    • 2
    • 3
    • 4
  • Wolf H. Fridman
    • 2
    • 3
    • 4
  1. 1.Pathology DepartmentJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Team “Cancer, immune control and escape”ParisFrance
  3. 3.Sorbonne Paris Cite, UMR_S 1138, Centre de Recherche des CordeliersUniversity Paris Descartes Paris 5ParisFrance
  4. 4.UMR_S 1138, Centre de Recherche des CordeliersSorbonne UniversityParisFrance

Personalised recommendations