Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Altered expression of apoptosis-regulating miRNAs in salivary gland tumors suggests their involvement in salivary gland tumorigenesis


Salivary gland tumors comprise a heterogeneous group of lesions with different histological features and diverse clinical pathophysiology. They account for about 3% of all head and neck tumors. Apoptosis plays an important role during morphogenesis of glandular structures, including that of the salivary gland. Recent studies have demonstrated that several microRNAs (miRNAs) are involved in the control of apoptosis. The aim of the present study was to determine the expression of apoptosis-related miRNAs (miR-15a, miR-16, miR-17-5p, miR-20a, miR-21, miR-29, and miR-34) and their target mRNAs in 25 pleomorphic adenomas, 23 mucoepidermoid carcinomas, and 10 non-neoplastic salivary gland samples by real-time RT-PCR. We observed upregulation of miR-15a, miR-16, miR-17-5p, miR-21, miR-29, and miR-34a in pleomorphic adenomas. The expression of miR-21 and miR-34a was upregulated in 91 and 74% of mucoepidermoid carcinomas, respectively. Downregulation of miR-20a was observed in 75% of pleomorphic adenomas and in 57% of mucoepidermoid carcinomas. APAF1, BAX, BCL2, BID, CASP2, CASP8, DIABLO , and TP53 transcripts were upregulated in both tumor types. BAD transcripts were upregulated in pleomorphic adenomas. CASP3 and CASP6 transcripts were upregulated in mucoepidermoid carcinomas. BCL2, CASP2, CASP6, and CASP8 proteins were mostly absent in mucoepidermoid carcinomas but expressed in few cells in pleomorphic adenomas. Our study provides evidence of alterations in the expression of apoptosis-regulating miRNAs in salivary gland tumors, suggesting possible involvement of these microRNAs in salivary gland tumorigenesis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Barnes L, Eveson JW, Reichart P, Sidransky D (2005) WHO classification of tumours. Pathology and genetics. Head and neck tumours, 3rd edn. IARC, Lyon

  2. 2.

    McHugh CH, Roberts DB, El-Naggar AK, Hanna EY, Garden AS, Kies MS, Weber RS, Kupferman ME (2012) Prognostic factors in mucoepidermoid carcinoma of the salivary glands. Cancer 118:3928–3936

  3. 3.

    Mendenhall WM, Mendenhall CM, Werning JW, Malyapa RS, Mendenhall NP (2008) Salivary gland pleomorphic adenoma. Am J Clin Oncol 31:95–99

  4. 4.

    Andrew DJ, Ewald AJ (2010) Morphogenesis of epithelial tubes: insights into tube formation, elongation, and elaboration. Dev Biol 341:34–55

  5. 5.

    Patel VN, Rebustini IT, Hoffman MP (2006) Salivary gland branching morphogenesis. Differentiation 74:349–364

  6. 6.

    Melnick M, Jaskoll T (2000) Mouse submandibular gland morphogenesis: a paradigm for embryonic signal processing. Crit Rev Oral Biol Med 11:199–215

  7. 7.

    Cotter TG (2009) Apoptosis and cancer: the genesis of a research field. Nat Ver Cancer 9(7):501–507

  8. 8.

    Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269

  9. 9.

    Acunzo M, Romano G, Wernicke D, Croce CM (2015) MicroRNA and cancer—a brief overview. Adv Biol Regul 57:1–9

  10. 10.

    Garofalo M, Condorelli GL, Croce CM, Condorelli G (2010) MicroRNAs as regulators of death receptors signaling. Cell Death Differ 17(2):200–208

  11. 11.

    Wang Z (2010) MicroRNA: a matter of life or death. World J Biol Chem 1(4):41–54

  12. 12.

    Chen Y, Fu LL, Wen X, Liu B, Huang J, Wang JH, Wey YQ (2014) Oncogenic and tumor suppressive roles of microRNAs in apoptosis and autophagy. Apoptosis 19(8):1177–1189

  13. 13.

    Otsuka K, Ochiya T (2014) Genetic networks lead and follow tumor development: microRNA regulation of cell cycle and apoptosis in the p53 pathways. Biomed Res Int 2014:749724

  14. 14.

    Su Z, Yang Z, Xu Y, Chen Y, Yu Q (2015) MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget 6(11):8474–8490

  15. 15.

    Pileczki V, Cojocneanu-Petric R, Maralani M, Neagoe IB, Sandulescu R (2016) MicroRNAs as regulators of apoptosis mechanisms in cancer. Clujul Med 89(1):50–55

  16. 16.

    Soini Y, Törmänen U, Pääkkö P (1998) Apoptosis is inversely related to bcl-2 but not to bax expression in salivary gland tumours. Histopathology 32:28–34

  17. 17.

    Aoki T, Tsukinoki K, Karakida K, Ota Y, Otsuru M, Kaneko A (2004) Expression of cyclooxygenase-2, Bcl-2 and Ki-67 in pleomorphic adenoma with special reference to tumor proliferation and apoptosis. Oral Oncol 40:954–959

  18. 18.

    Stenner M, Weinell A, Ponert T, Hardt A, Hahn M, Preuss SF, Guntinas-Lichius O, Klussmann JP (2010) Cytoplasmic expression of survivin is an independent predictor of poor prognosis in patients with salivary gland cancer. Histopathology 57:699–706

  19. 19.

    Gomes CC, Bernardes VF, Diniz MG, De Marco L, Gomez RS (2012) Anti-apoptotic gene transcription signature of salivary gland neoplasms. BMC Cancer 12:61

  20. 20.

    Ferreira JC, Morais MO, Elias MR, Batista AC, Leles CR, Mendonça EF (2014) Pleomorphic adenoma of oral minor salivary glands: an investigation of its neoplastic potential based on apoptosis, mucosecretory activity and cellular proliferation. Arch Oral Biol 59:578–585

  21. 21.

    Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99:15524–15529

  22. 22.

    Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102:13944–13949

  23. 23.

    Hui AB, Lenarduzzi M, Krushel T, Waldron L, Pintilie M, Shi W, Perez-Ordonez B, Jurisica I, O’Sullivan B, Waldron J, Gullane P, Cummings B, Liu FF (2010) Comprehensive MicroRNA profiling for head and neck squamous cell carcinomas. Clin Cancer Res 16:1129–1139

  24. 24.

    Coutinho-Camillo CM, Lourenço SV, Lima LA, Kowalski LP, Soares FA (2015) Expression of apoptosis-regulating miRNAs and target mRNAs in oral squamous cell carcinoma. Cancer Genet 208(7–8):382–389

  25. 25.

    Aqeilan RI, Calin GA, Croce CM (2010) miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ 17(2):215–220

  26. 26.

    Mendell JT (2008) miRiad roles for the miR-17-92 cluster in development and disease. Cell 133(2):217–222

  27. 27.

    Mitani Y, Roberts DB, Fatani H, Weber RS, Kies MS, Lippman SM, El-Naggar AK (2013) MicroRNA profiling of salivary adenoid cystic carcinoma: association of miR-17-92 upregulation with poor outcome. PLoS One 8:e66778

  28. 28.

    He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM (2005) A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833

  29. 29.

    Chang CC, Yang YJ, Li YJ, Chen ST, Lin BR, Wu TS, Lin SK, Kuo MY, Tan CT (2013) MicroRNA-17/20a functions to inhibit cell migration and can be used a prognostic marker in oral squamous cell carcinoma. Oral Oncol 49(9):923–931

  30. 30.

    Cinpolat O, Unal ZN, Ismi O, Gorur A, Unal M (2016) Comparison of microRNA profiles between benign and malignant salivary gland tumors in tissue, blood and saliva samples: a prospective, case-control study. Braz J Otorhinolaryngol. pii: S1808–8694(16)30052–0

  31. 31.

    Reis PP, Tomenson M, Cervigne NK, Machado J, Jurisica I, Pintilie M, Sukhai MA, Perez-Ordonez B, Grénman R, Gilbert RW, Gullane PJ, Irish JC, Kamel-Reid S (2010) Programmed cell death 4 loss increases tumor cell invasion and is regulated by miR-21 in oral squamous cell carcinoma. Mol Cancer 9:238

  32. 32.

    Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY (2007) miR-21-mediated tumor growth. Oncogene 26(19):2799–2803

  33. 33.

    Xiong Y, Fang JH, Yun JP, Yang J, Zhang Y, Jia WH, Zhuang SM (2010) Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology 51(3):836–845

  34. 34.

    Kinoshita T, Nohata N, Hanazawa T, Kikkawa N, Yamamoto N, Yoshino H, Itesako T, Enokida H, Nakagawa M, Okamoto Y, Seki N (2013) Tumour-suppressive microRNA-29s inhibit cancer cell migration and invasion by targeting laminin-integrin signalling in head and neck squamous cell carcinoma. Br J Cancer 109:2636–2645

  35. 35.

    Saito Y, Nakaoka T, Saito H (2015) microRNA-34a as a therapeutic agent against human cancer. J Clin Med 4(11):1951–1959

  36. 36.

    Ma Y, Qin H, Cui Y (2013) MiR-34a targets GAS1 to promote cell proliferation and inhibit apoptosis in papillary thyroid carcinoma via PI3K/Akt/Bad pathway. Biochem Biophys Res Commun 441:958–963

  37. 37.

    Djuranovic S, Nahvi A, Green R (2011) A parsimonious model for gene regulation by miRNAs. Science 331(6017):550–553

  38. 38.

    Agostini M, Knight RA (2014) miR-34: from bench to bedside. Oncotarget 5(4):872–881

  39. 39.

    Di Leva G, Garofalo M, Croce CM (2014) MicroRNAs in cancer. Annu Rev Pathol 9:287–314

  40. 40.

    Liao Y, Yang F, Li X, Chen K, Zhou L, Wang Y, Wang J (2015) The impact of Caspase-8 on non-small cell lung cancer brain metastasis in II/III stage patient. Neoplasma. doi:10.4149/neo_2015_043

  41. 41.

    Stenman G, Persson F, Andersson MK (2014) Diagnostic and therapeutic implications of new molecular biomarkers in salivary gland cancers. Oral Oncol 50(8):683–690

  42. 42.

    Gupta R, Balasubramanian D, Clark JR (2015) Salivary gland lesions: recent advances and evolving concepts. Oral Surg Oral Med Oral Pathol Oral Radiol 119(6):661–674

  43. 43.

    Fonseca FP, Sena Filho M, Altemani A, Speight PM, Vargas PA (2016) Molecular signature of salivary gland tumors: potential use as diagnostic and prognostic marker. J Oral Pathol Med 45(2):101–110

  44. 44.

    Zhang X, Cairns M, Rose B, O’Brien C, Shannon K, Clark J, Gamble J, Tran N (2009) Alterations in miRNA processing and expression in pleomorphic adenomas of the salivary gland. Int J Cancer 124:2855–2863

  45. 45.

    Liu L, Hu Y, Fu J, Yang X, Zhang Z (2013) MicroRNA155 in the growth and invasion of salivary adenoid cystic carcinoma. J Oral Pathol Med 42:140–147

  46. 46.

    Matse JH, Yoshizawa J, Wang X, Elashoff D, Bolscher JG, Veerman EC, Bloemena E, Wong DT (2013) Discovery and prevalidation of salivary extracellular microRNA biomarkers panel for the noninvasive detection of benign and malignant parotid gland tumors. Clin Cancer Res 19:3032–3038

  47. 47.

    Andreasen S, Therkildsen MH, Grauslund M, Friis-Hansen L, Wessel I, Homøe P (2015) Activation of the interleukin-6/Janus kinase/STAT3 pathway in pleomorphic adenoma of the parotid gland. APMIS 123(8):706–715

Download references

Author information

Correspondence to Cláudia Malheiros Coutinho-Camillo.

Ethics declarations

The Ethics Committee of the A.C.Camargo Cancer Center approved the study on October 22, 2013 (protocol number 1578/11E).


The study was supported by grants 11/02051-6 and 12/09759-7, São Paulo Research Foundation (FAPESP). The authors were supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES; scholarship to BCTCPF).

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary Figure 1

(JPEG 1.15 MB).

Supplementary Figure 2

(JPEG 1.10 MB).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Flores, B.d.C.T.d.C.P., Lourenço, S.V., Damascena, A.S. et al. Altered expression of apoptosis-regulating miRNAs in salivary gland tumors suggests their involvement in salivary gland tumorigenesis. Virchows Arch 470, 291–299 (2017). https://doi.org/10.1007/s00428-016-2049-z

Download citation


  • miRNAs
  • Mucoepidermoid carcinoma
  • Pleomorphic adenoma
  • Apoptosis
  • Real-time PCR