Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mucins MUC16 and MUC1 are major carriers of SLea and SLex in borderline and malignant serous ovarian tumors

  • 567 Accesses

  • 6 Citations

Abstract

Mucins are heavily glycosylated proteins overexpressed and associated with truncated or sialylated glycans upon malignant transformation. We previously identified a panel of four glyco-mucin profiles (MUC16/Tn, MUC16/STn, MUC1/Tn, and MUC1/STn) with 100 % specificity and 100 % positive predictive value for detection of borderline/malignant serous tumors of the ovary, using proximity ligation assay (PLA). In the present work, using the same method, we studied other mucin glycosylation profiles that might add relevant information for diagnostic purposes. We used PLA probes to MUC16, MUC1, sialyl Lewisa (SLea), and sialyl Lewisx (SLex) to study a series of 39 ovarian serous tumors (14 adenocarcinomas, 10 borderline ovarian tumors (BOTs), and 15 cystadenomas). Our results demonstrated that, in adenocarcinomas and BOTs, the major carriers of SLea and SLex are MUC16 and/or MUC1 (100 and 92 % for SLea and 64 and 70 % for SLex, respectively). In cystadenomas, SLea and SLex are mainly carried by unidentified proteins (85 and 78 %, respectively). Our study identified, for the first time, the major protein carriers of SLea and SLex in ovarian adenocarcinomas and BOTs, MUC1 and MUC16, and also that distinct unidentified carriers are involved in cystadenomas. These results emphasize the relevance of multiple biomarker recognition provided by multiplex assays, such as PLA, to enhance sensitivity and specificity of serum and tissue assays.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin D, Forman D, Bray F (2013) GLOBOCAN 2012 v1.0, Cancer incidence and mortality worldwide: IARC CancerBase No. 11 [Internet]. International Agency for Research on Cancer, Lyon, France

  2. 2.

    Hattrup CL, Gendler SJ (2008) Structure and function of the cell surface (tethered) mucins. Annu Rev Physiol 70:431–457. doi:10.1146/annurev.physiol.70.113006.100659

  3. 3.

    Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KT, Lavrsen K, Dabelsteen S, Pedersen NB, Marcos-Silva L, Gupta R, Bennett EP, Mandel U, Brunak S, Wandall HH, Levery SB, Clausen H (2013) Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. The EMBO J 32(10):1478–1488. doi:10.1038/emboj.2013.79

  4. 4.

    Marcos-Silva L, Narimatsu Y, Halim A, Campos D, Yang Z, Tarp MA, Pereira PJ, Mandel U, Bennett EP, Vakhrushev SY, Levery SB, David L, Clausen H (2014) Characterization of binding epitopes of CA125 monoclonal antibodies. J Proteome Res 13(7):3349–3359. doi:10.1021/pr500215g

  5. 5.

    Zurawski VR Jr., Orjaseter H, Andersen A, Jellum E (1988) Elevated serum CA 125 levels prior to diagnosis of ovarian neoplasia: relevance for early detection of ovarian cancer. Int J Cancer J Int Du Cancer 42(5):677–680

  6. 6.

    Capstick V, Maclean GD, Suresh MR, Bodnar D, Lloyd S, Shepert L, Longenecker BM, Krantz M (1991) Clinical evaluation of a new two-site assay for CA125 antigen. Int J Biol Markers 6(2):129–135

  7. 7.

    Kan YY, Yeh SH, Ng HT, Lou CM (1992) Effect of menstruation on serum CA125 levels. Asia-Oceania J Obstet Gynaecol/AOFOG 18(4):339–343

  8. 8.

    Timmerman D, Moerman P, Vergote I (1995) Meigs’ syndrome with elevated serum CA 125 levels: two case reports and review of the literature. Gynecol Oncol 59(3):405–408. doi:10.1006/gyno.1995.9952

  9. 9.

    Haridas D, Chakraborty S, Ponnusamy MP, Lakshmanan I, Rachagani S, Cruz E, Kumar S, Das S, Lele SM, Anderson JM, Wittel UA, Hollingsworth MA, Batra SK (2011) Pathobiological implications of MUC16 expression in pancreatic cancer. PLoS One 6(10):e26839. doi:10.1371/journal.pone.0026839

  10. 10.

    Bressan A, Bozzo F, Maggi CA, Binaschi M (2013) OC125, M11 and OV197 epitopes are not uniformly distributed in the tandem-repeat region of CA125 and require the entire SEA domain. Dis Markers 34(4):257–267. doi:10.3233/DMA-130968

  11. 11.

    Wang L, Ma J, Liu F, Yu Q, Chu G, Perkins AC, Li Y (2007) Expression of MUC1 in primary and metastatic human epithelial ovarian cancer and its therapeutic significance. Gynecol Oncol 105(3):695–702. doi:10.1016/j.ygyno.2007.02.004

  12. 12.

    Scambia G, Benedetti Panici P, Baiocchi G, Perrone L, Greggi S, Mancuso S (1988) CA 15-3 as a tumor marker in gynecological malignancies. Gynecol Oncol 30(2):265–273

  13. 13.

    Duffy MJ (2001) Clinical uses of tumor markers: a critical review. Crit Rev Clin Lab Sci 38(3):225–262. doi:10.1080/20014091084218

  14. 14.

    Pochechueva T, Jacob F, Fedier A, Heinzelmann-Schwarz V (2012) Tumor-associated glycans and their role in gynecological cancers: accelerating translational research by novel high-throughput approaches. Metabolites 2(4). doi:10.3390/metabo2040913

  15. 15.

    Dabelsteen E (1996) Cell surface carbohydrates as prognostic markers in human carcinomas. J Pathol 179(4):358–369. doi:10.1002/(sici)1096-9896(199608)179:4<358::aid-path564>3.0.co;2-t

  16. 16.

    Reis CA, Osorio H, Silva L, Gomes C, David L (2010) Alterations in glycosylation as biomarkers for cancer detection. J Clin Pathol 63(4):322–329. doi:10.1136/jcp.2009.071035

  17. 17.

    Saldova R, Royle L, Radcliffe CM, Abd Hamid UM, Evans R, Arnold JN, Banks RE, Hutson R, Harvey DJ, Antrobus R, Petrescu SM, Dwek RA, Rudd PM (2007) Ovarian cancer is associated with changes in glycosylation in both acute-phase proteins and IgG. Glycobiology 17(12):1344–1356. doi:10.1093/glycob/cwm100

  18. 18.

    Ricardo S, Marcos-Silva L, Pereira D, Pinto R, Almeida R, Soderberg O, Mandel U, Clausen H, Felix A, Lunet N, David L (2015) Detection of glyco-mucin profiles improves specificity of MUC16 and MUC1 biomarkers in ovarian serous tumours. Mol Oncol 9(2):503–512. doi:10.1016/j.molonc.2014.10.005

  19. 19.

    Simon R, Mirlacher M, Sauter G (2004) Tissue microarrays. Methods Mol Med 97:377–389. doi:10.1385/1-59259-760-2:377

  20. 20.

    Avninder S, Ylaya K, Hewitt SM (2008) Tissue microarray: a simple technology that has revolutionized research in pathology. J Postgrad Med 54(2):158–162

  21. 21.

    Marcos-Silva L, Ricardo S, Chen K, Blixt O, Arigi E, Pereira D, Hogdall E, Mandel U, Bennett EP, Vakhrushev SY, David L, Clausen H (2015) A novel monoclonal antibody to a defined peptide epitope in MUC16. Glycobiology 25(11):1172–1182. doi:10.1093/glycob/cwv056

  22. 22.

    Taylor-Papadimitriou J, Peterson JA, Arklie J, Burchell J, Ceriani RL, Bodmer WF (1981) Monoclonal antibodies to epithelium-specific components of the human milk fat globule membrane: production and reaction with cells in culture. Int J Cancer J Int Du Cancer 28(1):17–21

  23. 23.

    Motoyama T, Watanabe H, Takeuchi S, Watanabe T, Gotoh S, Okazaki E (1990) Cancer antigen 125, carcinoembryonic antigen, and carbohydrate determinant 19-9 in ovarian tumors. Cancer 66(12):2628–2635

  24. 24.

    Jeschke U, Mylonas I, Shabani N, Kunert-Keil C, Schindlbeck C, Gerber B, Friese K (2005) Expression of sialyl Lewis X, sialyl Lewis A, E-cadherin and cathepsin-D in human breast cancer: immunohistochemical analysis in mammary carcinoma in situ, invasive carcinomas and their lymph node metastasis. Anticancer Res 25(3 A):1615–1622

  25. 25.

    Pinto R, Carvalho AS, Conze T, Magalhaes A, Picco G, Burchell JM, Taylor-Papadimitriou J, Reis CA, Almeida R, Mandel U, Clausen H, Soderberg O, David L (2012) Identification of new cancer biomarkers based on aberrant mucin glycoforms by in situ proximity ligation. J Cell Mol Med 16(7):1474–1484. doi:10.1111/j.1582-4934.2011.01436.x

  26. 26.

    Conze T, Carvalho AS, Landegren U, Almeida R, Reis CA, David L, Soderberg O (2010) MUC2 mucin is a major carrier of the cancer-associated sialyl-Tn antigen in intestinal metaplasia and gastric carcinomas. Glycobiology 20(2):199–206. doi:10.1093/glycob/cwp161

  27. 27.

    Yue T, Goldstein IJ, Hollingsworth MA, Kaul K, Brand RE, Haab BB (2009) The prevalence and nature of glycan alterations on specific proteins in pancreatic cancer patients revealed using antibody-lectin sandwich arrays. Mol Cell Proteomics: MCP 8(7):1697–1707. doi:10.1074/mcp.M900135-MCP200

  28. 28.

    Yue T, Maupin KA, Fallon B, Li L, Partyka K, Anderson MA, Brenner DE, Kaul K, Zeh H, Moser AJ, Simeone DM, Feng Z, Brand RE, Haab BB (2011) Enhanced discrimination of malignant from benign pancreatic disease by measuring the CA 19-9 antigen on specific protein carriers. PLoS One 6(12):e29180. doi:10.1371/journal.pone.0029180

  29. 29.

    Davidson B, Berner A, Nesland JM, Risberg B, Kristensen GB, Trope CG, Bryne M (2000) Carbohydrate antigen expression in primary tumors, metastatic lesions, and serous effusions from patients diagnosed with epithelial ovarian carcinoma: evidence of up-regulated Tn and sialyl Tn antigen expression in effusions. Hum Pathol 31(9):1081–1087. doi:10.1053/hupa.2000.9776

  30. 30.

    Bresalier RS, Ho SB, Schoeppner HL, Kim YS, Sleisenger MH, Brodt P, Byrd JC (1996) Enhanced sialylation of mucin-associated carbohydrate structures in human colon cancer metastasis. Gastroenterology 110(5):1354–1367

  31. 31.

    Al Masri A, Gendler SJ (2005) Muc1 affects c-Src signaling in PyV MT-induced mammary tumorigenesis. Oncogene 24(38):5799–5808. doi:10.1038/sj.onc.1208738

  32. 32.

    Giannakouros P, Comamala M, Matte I, Rancourt C, Piche A (2015) MUC16 mucin (CA125) regulates the formation of multicellular aggregates by altering beta-catenin signaling. Am J Cancer Res 5(1):219–230

  33. 33.

    Akita K, Tanaka M, Tanida S, Mori Y, Toda M, Nakada H (2013) CA125/MUC16 interacts with Src family kinases, and over-expression of its C-terminal fragment in human epithelial cancer cells reduces cell-cell adhesion. Eur J Cell Biol 92(8–9):257–263. doi:10.1016/j.ejcb.2013.10.005

  34. 34.

    Bitler BG, Goverdhan A, Schroeder JA (2010) MUC1 regulates nuclear localization and function of the epidermal growth factor receptor. J Cell Sci 123(Pt 10):1716–1723. doi:10.1242/jcs.062661

  35. 35.

    Comamala M, Pinard M, Theriault C, Matte I, Albert A, Boivin M, Beaudin J, Piche A, Rancourt C (2011) Downregulation of cell surface CA125/MUC16 induces epithelial-to-mesenchymal transition and restores EGFR signalling in NIH:OVCAR3 ovarian carcinoma cells. Br J Cancer 104(6):989–999. doi:10.1038/bjc.2011.34

  36. 36.

    Akita K, Yoshida S, Ikehara Y, Shirakawa S, Toda M, Inoue M, Kitawaki J, Nakanishi H, Narimatsu H, Nakada H (2012) Different levels of sialyl-Tn antigen expressed on MUC16 in patients with endometriosis and ovarian cancer. Int J Gynecol Cancer Off J Int Gynecol Cancer Soc 22(4):531–538. doi:10.1097/IGC.0b013e3182473292

  37. 37.

    Chen K, Gentry-Maharaj A, Burnell M, Steentoft C, Marcos-Silva L, Mandel U, Jacobs I, Dawnay A, Menon U, Blixt O (2013) Microarray glycoprofiling of CA125 improves differential diagnosis of ovarian cancer. J Proteome Res 12(3):1408–1418. doi:10.1021/pr3010474

  38. 38.

    Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J, Wester K, Hydbring P, Bahram F, Larsson LG, Landegren U (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 3(12):995–1000. doi:10.1038/nmeth947

  39. 39.

    Koos B, Kamali-Moghaddam M, David L, Sobrinho-Simoes M, Dimberg A, Nilsson M, Wahlby C, Soderberg O (2015) Next-generation pathology—surveillance of tumor microecology. J Mol Biol 427(11):2013–2022. doi:10.1016/j.jmb.2015.02.017

  40. 40.

    Liu X, Sejbal J, Kotovych G, Koganty RR, Reddish MA, Jackson L, Gandhi SS, Mendonca AJ, Longenecker BM (1995) Structurally defined synthetic cancer vaccines: analysis of structure, glycosylation and recognition of cancer associated mucin, MUC-1 derived peptides. Glycoconj J 12(5):607–617

Download references

Acknowledgments

The authors thank Joyce Taylor-Papadimitriou and Joy Burchell for their kind offer of antibody HMRG2. The authors also thank Fátima Carneiro, Director of the Department of Pathology of Centro Hospitalar S. João, for the easy access to archived material.

Author information

Correspondence to Sara Ricardo.

Ethics declarations

Conflict of interest

The authors have no conflict of interest and no competing interests.

Grant support

Support by Programa Operacional Ciência e Inovação 2010 do Quadro Comunitário de Apoio III and FEDER (PTDC/SAU-ONC/117,216/2010). IPATIMUP is an Associate Laboratory of the Portuguese Ministry of Science, Technology, and Higher Education and partially supported by FCT. Project NORTE-07-0124-FEDER-000,024 co-financed by Programa Operacional Regional do Norte (ON.2–O Novo Norte), under Quadro de Referência Estratégico Nacional (QREN), by Fundo Europeu de Desenvolvimento Regional (FEDER). Sara Ricardo acknowledges FCT for financial support through Post-Doc fellowship (SFRH/BPD/100358/2014).

Additional information

Sara Ricardo and Lara Marcos-Silva contributed equally to the work.

Electronic supplementary material

Figure 3
figure3

(JPG 379 kb)

Supplementary Fig. 1

Kaplan-Meier plots representing overall survival results for 14 serous ovarian adenocarcinoma cases, defined according to SLea and SLex patterns of expression and PLA results for MUC16/SLea, MUC1/SLea, MUC16/SLex, and MUC1/SLex. No significant difference was observed (GIF 37 kb)

High-resolution image (EPS 82,963 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ricardo, S., Marcos-Silva, L., Valente, C. et al. Mucins MUC16 and MUC1 are major carriers of SLea and SLex in borderline and malignant serous ovarian tumors. Virchows Arch 468, 715–722 (2016). https://doi.org/10.1007/s00428-016-1929-6

Download citation

Keywords

  • Ovarian cancer
  • MUC16/1
  • SLea
  • SLex
  • Proximity ligation assay