Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Expression of pERK and pAKT in human astrocytomas: correlation with IDH1-R132H presence, vascular endothelial growth factor, microvascular characteristics and clinical outcome

  • 284 Accesses

  • 11 Citations


Although pERK and pAKT are reportedly activated in various neoplasms, little information is available about their significance in astrocytomas. Paraffin-embedded tissue from 82 patients with diffuse infiltrating astrocytomas (grades II to IV) was investigated for the association of pERK and pAKT activation with clinicopathological features, vascular endothelial growth factor (VEGF), isocitrate dehydrogenase 1 and microvascular parameters. Nuclear pERK labelling index (LI) increased with increasing cytoplasmic pERK LI and nuclear and cytoplasmic pAKT LI (p = 0.0019, p = 0.0260 and p = 0.0012, respectively). Accordingly, cytoplasmic pERK increased with increasing levels of nuclear (p = 0.0001) and marginally with cytoplasmic pAKT LI (p = 0.0526). Nuclear and cytoplasmic pERK LI and nuclear pAKT LI were positively correlated with tumour histological grade (p = 0.0040, p = 0.0238 for pERK and p = 0.0004 for pAKT, respectively). VEGF expression was correlated with nuclear pERK (p = 0.0099) and nuclear pAKT LI (p = 0.0002). Interestingly, pERK cytoplasmic LI increased with microvessel calibre (p = 0.0287), whereas pAKT nuclear LI was marginally related to microvessel density (p = 0.0685). The presence of IDH1-R132H was related only to histological grade and lower microvessel calibre. Multivariate survival analysis in the entire cohort selected cytoplasmic pAKT LI (p = 0.045), histological grade, microvessel calibre (p = 0.028), patients' age, gender and surgical excision as independent predictors of survival. Moreover, in glioblastomas, pERK nuclear LI emerged as a favourable prognosticator in the presence of IDH1-R132H. pERK and pAKT in astrocytomas are interrelated and associated with tumour grade and angiogenesis. Moreover, the importance of cytoplasmic pAKT immunoexpression in patients' prognosis and nuclear pERK immunoexpression in glioblastomas is confirmed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

  2. 2.

    Capper D, Weissert S, Balss J et al (2010) Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol 20:245–254

  3. 3.

    Pelloski CE, Lin E, Zhang L et al (2006) Prognostic associations of activated mitogen-activated protein kinase and Akt pathways in glioblastoma. Clin Cancer Res 12:3935–3941

  4. 4.

    Robinson MJ, Cobb MH (1997) Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 9:180–186

  5. 5.

    Schaeffer HJ, Weber MJ (1999) Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 19:2435–2444

  6. 6.

    Pearson G, Robinson F, Beers Gibson T et al (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183

  7. 7.

    Torii S, Yamamoto T, Tsuchiya Y et al (2006) ERK MAP kinase in G cell cycle progression and cancer. Cancer Sci 97:697–702

  8. 8.

    Hoshino R, Chatani Y, Yamori T et al (1999) Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene 18:813–822

  9. 9.

    Mercer K, Chiloeches A, Hüser M et al (2002) ERK signalling and oncogene transformation are not impaired in cells lacking A-Raf. Oncogene 21:347–355

  10. 10.

    Yoon S, Seger R (2006) The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24:21–44

  11. 11.

    Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

  12. 12.

    Carnero A (2010) The PKB/AKT pathway in cancer. Curr Pharm Des 16:34–44

  13. 13.

    Hartmann C, Hentschel B, Wick W et al (2010) Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol 120:707–718

  14. 14.

    Rajput A, Koterba AP, Kreisberg JI et al (2007) A novel mechanism of resistance to epidermal growth factor receptor antagonism in vivo. Cancer Res 67:665–673

  15. 15.

    Renken C, Fischer DC, Kundt G et al (2011) Inhibition of mTOR with sirolimus does not attenuate progression of liver and kidney disease in PCK rats. Nephrol Dial Transplant 26:92–100

  16. 16.

    Korkolopoulou P, Perdiki M, Thymara I et al (2007) Expression of hypoxia-related tissue factors in astrocytic gliomas. A multivariate survival study with emphasis upon carbonic anhydrase IX. Hum Pathol 38:629–638

  17. 17.

    Korkolopoulou P, Patsouris E, Kavantzas N et al (2002) Prognostic implications of microvessel morphometry in diffuse astrocytic neoplasms. Neuropathol Appl Neurobiol 28:57–66

  18. 18.

    El-Habr EA, Tsiorva P, Theodorou M et al (2010) Analysis of PIK3CA and B-RAF gene mutations in human astrocytomas: association with activation of ERK and AKT. Clin Neuropathol 29:239–245

  19. 19.

    Perdiki M, Korkolopoulou P, Thymara I et al (2007) Cyclooxygenase-2 expression in astrocytomas. Relationship with microvascular parameters, angiogenic factors expression and survival. Mol Cell Biochem 295:75–83

  20. 20.

    Takano S, Tian W, Matsuda M et al. (2011) Detection of IDH1 mutation in human gliomas: comparison of immunohistochemistry and sequencing. Brain Tumor Pathol (in press)

  21. 21.

    Givant-Horwitz V, Davidson B, Lazarovici P et al (2003) Mitogen-activated protein kinases (MAPK) as predictors of clinical outcome in serous ovarian carcinoma in effusions. Gynecol Oncol 91:160–172

  22. 22.

    McCubrey JA, Steelman LS, Chappell WH et al (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773:1263–1284

  23. 23.

    Schmitz KJ, Wohlschlaeger J, Alakus H et al (2007) Activation of extracellular regulated kinases (ERK1/2) but not AKT predicts poor prognosis in colorectal carcinoma and is associated with k-ras mutations. Virchows Arch 450:151–159

  24. 24.

    Mizoguchi M, Betensky RA, Batchelor TT et al (2006) Activation of STAT3, MAPK, and AKT in malignant astrocytic gliomas: correlation with EGFR status, tumour grade, and survival. J Neuropathol Exp Neurol 65:1181–1188

  25. 25.

    Mawrin C, Diete S, Treuheit T et al (2003) Prognostic relevance of MAPK expression in glioblastoma multiforme. Int J Oncol 23:641–648

  26. 26.

    Matsutani T, Nagai Y, Mine S et al (2009) Akt/protein kinase B overexpression as an accurate prognostic marker in adult diffuse astrocytoma. Acta Neurochir Wien 151:263–268

  27. 27.

    Hlobilkova A, Ehrmann J, Sedlakova E et al (2007) Could changes in the regulation of the PI3K/PKB/Akt signaling pathway and cell cycle be involved in astrocytic tumor pathogenesis and progression? Neoplasma 54:334–341

  28. 28.

    Calvo F, Agudo-Ibáñez L, Crespo P (2010) The Ras-ERK pathway: understanding site-specific signaling provides hope of new anti-tumor therapies. Bioessays 32:412–421

  29. 29.

    Mandell JW, Hussaini IM, Zecevic M et al (1998) In situ visualization of intratumour growth factor signaling: immunohistochemical localization of activated ERK/MAP kinase in glial neoplasms. Am J Pathol 153:1411–1423

  30. 30.

    Albanell J, Codony-Servat J, Rojo F et al (2001) Activated extracellular signal-regulated kinases: association with epidermal growth factor receptor/transforming growth factor alpha expression in head and neck squamous carcinoma and inhibition by anti-epidermal growth factor receptor treatments. Cancer Res 61:6500–6510

  31. 31.

    Jørgensen K, Holm R, Maelandsmo GM et al (2003) Expression of activated extracellular signal-regulated kinases 1/2 in malignant melanomas: relationship with clinical outcome. Clin Cancer Res 9:5325–5331

  32. 32.

    Mizumoto Y, Kyo S, Mori N et al (2007) Activation of ERK1/2 occurs independently of KRAS or BRAF status in endometrial cancer and is associated with favorable prognosis. Cancer Sci 98:652–658

  33. 33.

    Vicent S, López-Picazo JM, Toledo G et al (2004) ERK1/2 is activated in non-small-cell lung cancer and associated with advanced tumours. Br J Cancer 90:1047–1052

  34. 34.

    Wang H, Wang H, Zhang W et al (2004) Analysis of the activation status of AKT, NFkappaB, and Stat3 in human diffuse gliomas. Lab Invest 84:941–951

  35. 35.

    Chakravarti A, Zhai G, Suzuki Y et al (2004) The prognostic significance of phosphatidylinositol 3-kinase pathway activation in human gliomas. J Clin Oncol 22:1926–1933

  36. 36.

    Suzuki Y, Shirai K, Oka K et al (2010) Higher pAkt expression predicts a significant worse prognosis in glioblastomas. J Radiat Res Tokyo 51:343–348

  37. 37.

    Woenckhaus J, Steger K, Sturm K et al (2007) Prognostic value of PIK3CA and phosphorylated AKT expression in ovarian cancer. Virchows Arch 450:387–395

  38. 38.

    Shah A, Swain WA, Richardson D et al (2005) Phospho-akt expression is associated with a favorable outcome in non-small cell lung cancer. Clin Cancer Res 11:2930–2936

  39. 39.

    Le Page C, Koumakpayi IH, Alam-Fahmy M et al (2006) Expression and localisation of AKT-1, AKT-2 and AKT-3 correlate with clinical outcome of prostate cancer patients. Br J Cancer 94:1906–1912

  40. 40.

    Holland EC (2000) A mouse model for glioma: biology, pathology, and therapeutic opportunities. Toxicol Pathol 28:171–177

  41. 41.

    Kolch W, Pitt A (2010) Functional proteomics to dissect tyrosine kinase signalling pathways in cancer. Nat Rev Cancer 10:618–629

  42. 42.

    Li B, Xu W, Luo C et al (2003) VEGF-induced activation of the PI3-K/AKT pathway reduces mutant SOD1-mediated motor neuron cell death. Brain Res Mol Brain Res 111:155–164

  43. 43.

    Pore N, Liu S, Shu HK et al (2004) Sp1 is involved in AKT-mediated induction of VEGF expression through an HIF-1-independent mechanism. Mol Biol Cell 15:4841–4853

  44. 44.

    Milde-Langosch K, Bamberger AM, Rieck G et al (2005) Expression and prognostic relevance of activated extracellular-regulated kinases (ERK1/2) in breast cancer. Br J Cancer 92:2206–2215

  45. 45.

    Adeyinka A, Nui Y, Cherlet T et al (2002) Activated mitogen-activated protein kinase expression during human breast tumorigenesis and breast cancer progression. Clin Cancer Res 8:1747–1753

  46. 46.

    Chadha KS, Khoury T, Yu J et al (2006) Activated AKT and Erk expression and survival after surgery in pancreatic carcinoma. Ann Surg Oncol 13:933–939

  47. 47.

    Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185

  48. 48.

    Myers AP, Cantley LC (2010) Targeting a common collaborator in cancer development. Sci Transl Med 2:48ps45

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Correspondence to Angelica A. Saetta.

Additional information

Angelica A. Saetta, Georgia Levidou and Elias A. El-Habr equally contributed to this manuscript.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Saetta, A.A., Levidou, G., El-Habr, E.A. et al. Expression of pERK and pAKT in human astrocytomas: correlation with IDH1-R132H presence, vascular endothelial growth factor, microvascular characteristics and clinical outcome. Virchows Arch 458, 749–759 (2011). https://doi.org/10.1007/s00428-011-1074-1

Download citation


  • pERK
  • pAKT
  • IDH1-R132H
  • Angiogenesis
  • Survival
  • Astrocytomas