Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Human pheochromocytomas show reduced p27Kip1 expression that is not associated with somatic gene mutations and rarely with deletions

  • 119 Accesses

  • 11 Citations


Pheochromocytomas are neuroendocrine tumors arising in the neural crest-derived chromaffin cells of the adrenal gland or in extra-adrenal sympathetic ganglia (paragangliomas). In a rat model of multiple endocrine neoplasia (MEN), absence of functional p27Kip1 protein predisposes to pheochromocytoma and paraganglioma development. As no data is available regarding the involvement of p27Kip1 in human pheochromocytoma and/or paraganglioma, we set out to determine the expression pattern of p27Kip1 in those tumor types. A panel of 25 pheochromocytomas and 23 paragangliomas was collected. Two pheochromocytomas were from MEN2 patients. The paragangliomas included 15 tumors that developed at the carotid bifurcation, three in the jugulo–tympanic area, and five at other sites. Except for the MEN2 cases, all others were apparently sporadic. Immunohistochemistry for p27Kip1 and the proliferation marker Ki67 was performed. We found that p27Kip1 expression is reduced/lost in 56% of pheochromocytomas, but only in 18.1% of paragangliomas. Downregulation of p27Kip1 was not associated with increased proliferation. Cases showing reduced/lost p27Kip1 expression were screened for the presence of somatic mutations in CDKN1B (p27Kip1) and for allelic imbalance at the p27Kip1 locus. Three cases had allelic imbalance but none had mutations. In conclusion, pheochromocytomas display extreme reduction/loss of p27Kip1 expression at high frequency.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3



cyclin-dependent kinase


multiple endocrine neoplasia


von Hippel–Lindau


succinate dehydrogenase


allelic imbalance


  1. 1.

    Adesina AM, Dunn ST, Moore WE, Nalbantoglu J (2000) Expression of p27kip1 and p53 in medulloblastoma: relationship with cell proliferation and survival. Pathol Res Pract 196:243–250

  2. 2.

    Agathanggelou A, Cooper WN, Latif F (2005) Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res 65:3497–3508

  3. 3.

    Alkarain A, Slingerland J (2004) Deregulation of p27 by oncogenic signaling and its prognostic significance in breast cancer. Breast Cancer Res 6:13–21

  4. 4.

    Astuti D, Agathanggelou A, Honorio S, Dallol A, Martinsson T, Kogner P, Cummins C, Neumann HP, Voutilainen R, Dahia P, Eng C, Maher ER, Latif F (2001) RASSF1A promoter region CpG island hypermethylation in pheochromocytomas and neuroblastoma tumours. Oncogene 20:7573–7577

  5. 5.

    Astuti D, Hart-Holden N, Latif F, Lalloo F, Black GC, Lim C, Moran A, Grossman AB, Hodgson SV, Freemont A, Ramsden R, Eng C, Evans DG, Maher ER (2003) Genetic analysis of mitochondrial complex II subunits SDHD, SDHB and SDHC in paraganglioma and phaeochromocytoma susceptibility. Clin Endocrinol 59:728–733

  6. 6.

    Baldassarre G, Belletti B, Nicoloso MS, Schiappacassi M, Vecchione A, Spessotto P, Morrione A, Canzonieri V, Colombatti A (2005) p27(Kip1)-stathmin interaction influences sarcoma cell migration and invasion. Cancer Cell 7:51–63

  7. 7.

    Bauters C, Vantyghem MC, Leteurtre E, Odou MF, Mouton C, Porchet N, Wemeau JL, Proye C, Pigny P (2003) Hereditary pheochromocytomas and paragangliomas: a study of five susceptibility genes. J Med Genet 40:e75

  8. 8.

    Besson A, Gurian-West M, Schmidt A, Hall A, Roberts JM (2004) p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev 18:862–876

  9. 9.

    Canavese G, Azzoni C, Pizzi S, Corleto VD, Pasquali C, Davoli C, Crafa P, Delle Fave G, Bordi C (2001) p27: a potential main inhibitor of cell proliferation in digestive endocrine tumors but not a marker of benign behavior. Hum Pathol 32:1094–1101

  10. 10.

    Canzian F, Salovaara R, Hemminki A, Kristo P, Chadwick RB, Aaltonen LA, de la Chapelle A (1996) Semiautomated assessment of loss of heterozygosity and replication error in tumors. Cancer Res 56:3331–3337

  11. 11.

    Catzavelos C, Bhattacharya N, Ung YC, Wilson JA, Roncari L, Sandhu C, Shaw P, Yeger H, Morava-Protzner I, Kapusta L, Franssen E, Pritchard KI, Slingerland JM (1997) Decreased levels of the cell-cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. Nat Med 3:227–230

  12. 12.

    Chiarle R, Budel LM, Skolnik J, Frizzera G, Chilosi M, Corato A, Pizzolo G, Magidson J, Montagnoli A, Pagano M, Maes B, De Wolf-Peeters C, Inghirami G (2000) Increased proteasome degradation of cyclin-dependent kinase inhibitor p27 is associated with a decreased overall survival in mantle cell lymphoma. Blood 95:619–626

  13. 13.

    Chiarle R, Fan Y, Piva R, Boggino H, Skolnik J, Novero D, Palestro G, De Wolf-Peeters C, Chilosi M, Pagano M, Inghirami G (2002) S-phase kinase-associated protein 2 expression in non-Hodgkin’s lymphoma inversely correlates with p27 expression and defines cells in S phase. Am J Pathol 160:1457–1466

  14. 14.

    Dahia PL (2006) Evolving concepts in pheochromocytoma and paraganglioma. Curr Opin Oncol 18:1–8

  15. 15.

    Dahia PL, Hao K, Rogus J, Colin C, Pujana MA, Ross K, Magoffin D, Aronin N, Cascon A, Hayashida CY, Li C, Toledo SP, Stiles CD, Familial Pheochromocytoma Consortium (2005) Novel pheochromocytoma susceptibility loci identified by integrative genomics. Cancer Res 65:9651–9658

  16. 16.

    Dahia PL, Ross KN, Wright ME, Hayashida CY, Santagata S, Barontini M, Kung AL, Sanso G, Powers JF, Tischler AS, Hodin R, Heitritter S, Moore F, Dluhy R, Sosa JA, Ocal IT, Benn DE, Marsh DJ, Robinson BG, Schneider K, Garber J, Arum SM, Korbonits M, Grossman A, Pigny P, Toledo SP, Nose V, Li C, Stiles CD (2005) A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet 1:72–80

  17. 17.

    Dammann R, Schagdarsurengin U, Seidel C, Trumpler C, Hoang-Vu C, Gimm O, Dralle H, Pfeifer GP, Brauckhoff M (2005) Frequent promoter methylation of tumor-related genes in sporadic and men2-associated pheochromocytomas. Exp Clin Endocrinol Diabetes 113:1–7

  18. 18.

    Eisenhofer G, Bornstein SR, Brouwers FM, Cheung NK, Dahia PL, de Krijger RR, Giordano TJ, Greene LA, Goldstein DS, Lehnert H, Manger WM, Maris JM, Neumann HP, Pacak K, Shulkin BL, Smith DI, Tischler AS, Young WF Jr (2004) Malignant pheochromocytoma: current status and initiatives for future progress. Endocr Relat Cancer 11:423–436

  19. 19.

    Esposito V, Baldi A, De Luca A, Groger AM, Loda M, Giordano GG, Caputi M, Baldi F, Pagano M, Giordano A (1997) Prognostic role of the cyclin-dependent kinase inhibitor p27 in non-small cell lung cancer. Cancer Res 57:3381–3385

  20. 20.

    Franklin DS, Godfrey VL, Lee H, Kovalev GI, Schoonhoven R, Chen-Kiang S, Su L, Xiong Y (1998) CDK inhibitors p18(INK4c) and p27(Kip1) mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev 12:2899–2911

  21. 21.

    Fritz A, Walch A, Piotrowska K, Rosemann M, Schaffer E, Weber K, Timper A, Wildner G, Graw J, Hofler H, Atkinson MJ (2002) Recessive transmission of a multiple endocrine neoplasia syndrome in the rat. Cancer Res 62:3048–3051

  22. 22.

    Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA (1992) Effects of an Rb mutation in the mouse. Nature 359:295–300

  23. 23.

    Jin L, Qian X, Kulig E, Sanno N, Scheithauer BW, Kovacs K, Young WF Jr, Lloyd RV (1997) Transforming growth factor-beta, transforming growth factor-beta receptor II, and p27Kip1 expression in nontumorous and neoplastic human pituitaries. Am J Pathol 151:509–519

  24. 24.

    Kawamata N, Morosetti R, Miller CW, Park D, Spirin KS, Nakamaki T, Takeuchi S, Hatta Y, Simpson J, Wilcyznski S, Lee YY, Bartram CR, Koeffler HP (1995) Molecular analysis of the cyclin-dependent kinase inhibitor gene p27/Kip1 in human malignancies. Cancer Res 55:2266–2269

  25. 25.

    Kibel AS, Faith DA, Bova GS, Isaacs WB (2000) Loss of heterozygosity at 12P12-13 in primary and metastatic prostate adenocarcinoma. J Urol 164:192–196

  26. 26.

    Lee EY, Chang CY, Hu N, Wang YC, Lai CC, Herrup K, Lee WH, Bradley A (1992) Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359:288–294

  27. 27.

    Lei PP, Zhang ZJ, Shen LJ, Li JY, Zou Q, Zhang HX (2005) Expression and hypermethylation of p27 kip1 in hepatocarcinogenesis. World J Gastroenterol 11:4587–4591

  28. 28.

    Lloyd RV, Erickson LA, Jin L, Kulig E, Qian X, Cheville JC, Scheithauer BW (1999) p27kip1: a multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am J Pathol 154:313–323

  29. 29.

    Loda M, Cukor B, Tam SW, Lavin P, Fiorentino M, Draetta GF, Jessup JM, Pagano M (1997) Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat Med 3:231–234

  30. 30.

    Morosetti R, Kawamata N, Gombart AF, Miller CW, Hatta Y, Hirama T, Said JW, Tomonaga M, Koeffler HP (1995) Alterations of the p27KIP1 gene in non-Hodgkin’s lymphomas and adult T-cell leukemia/lymphoma. Blood 86:1924–1930

  31. 31.

    Nakatsuka S, Liu A, Yao M, Takakuwa T, Tomita Y, Hoshida Y, Nishiu M, Aozasa K (2003) Methylation of promoter region in p27 gene plays a role in the development of lymphoid malignancies. Int J Oncol 22:561–568

  32. 32.

    Neumann HP, Bausch B, McWhinney SR, Bender BU, Gimm O, Franke G, Schipper J, Klisch J, Altehoefer C, Zerres K, Januszewicz A, Eng C, Smith WM, Munk R, Manz T, Glaesker S, Apel TW, Treier M, Reineke M, Walz MK, Hoang-Vu C, Brauckhoff M, Klein-Franke A, Klose P, Schmidt H, Maier-Woelfle M, Peczkowska M, Szmigielski C, Eng C; Freiburg–Warsaw–Columbus Pheochromocytoma Study Group (2002) Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med 346:1459–1466

  33. 33.

    Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, Yew PR, Draetta GF, Rolfe M (1995) Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269:682–685

  34. 34.

    Pellegata NS, Quintanilla-Martinez L, Siggelkow H, Samson E, Bink K, Höfler H, Fend F, Graw J, Atkinson MJ (2006) Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci USA 103:15558–15563

  35. 35.

    Piotrowska K, Pellegata NS, Rosemann M, Fritz A, Graw J, Atkinson MJ (2004) Mapping of a novel MEN-like syndrome locus to rat chromosome 4. Mamm Genome 15:135–141

  36. 36.

    Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, Massague J (1994) Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78:59–66

  37. 37.

    Quintanilla-Martinez L, Kremer M, Specht K, Calzada-Wack J, Nathrath M, Schaich R, Hofler H, Fend F (2003) Analysis of signal transducer and activator of transcription 3 (Stat 3) pathway in multiple myeloma: Stat 3 activation and cyclin D1 dysregulation are mutually exclusive events. Am J Pathol 162:1449–1461

  38. 38.

    Spirin KS, Simpson JF, Takeuchi S, Kawamata N, Miller CW, Koeffler HP (1996) p27/Kip1 mutation found in breast cancer. Cancer Res 56:2400–2404

  39. 39.

    Toyoshima H, Hunter T (1994) p27Kip1, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78:67–74

  40. 40.

    van Houwelingen KP, van Dijk BA, Hulsbergen-van de Kaa CA, Schouten LJ, Gorissen HJ, Schalken JA, van den Brandt PA, Oosterwijk E (2005) Prevalence of von Hippel–Lindau gene mutations in sporadic renal cell carcinoma: results from The Netherlands cohort study. BMC Cancer 5:57

  41. 41.

    Williams BO, Schmitt EM, Remington L, Bronson RT, Albert DM, Weinberg RA, Jacks T (1994) Extensive contribution of Rb-deficient cells to adult chimeric mice with limited histopathological consequences. EMBO J 13:4251–4259

  42. 42.

    Wu FY, Wang SE, Sanders ME, Shin I, Rojo F, Baselga J, Arteaga CL (2006) Reduction of cytosolic p27(Kip1) inhibits cancer cell motility, survival, and tumorigenicity. Cancer Res 66:2162–2172

Download references


We would like to thank E. Samson, N. Kink, J. Müller, and C. Kloos for technical assistance. This work was in part supported by the Deutschen Forschungsgemeinschaft (GraduiertenKolleg 333).

Author information

Correspondence to Natalia S. Pellegata.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pellegata, N.S., Quintanilla-Martinez, L., Keller, G. et al. Human pheochromocytomas show reduced p27Kip1 expression that is not associated with somatic gene mutations and rarely with deletions. Virchows Arch 451, 37–46 (2007). https://doi.org/10.1007/s00428-007-0431-6

Download citation


  • Pheochromocytoma
  • Paraganglioma
  • p27Kip1
  • Ki67
  • Immunohistochemistry
  • Allelic imbalance