Advertisement

Development Genes and Evolution

, Volume 229, Issue 4, pp 89–102 | Cite as

Divergent Axin and GSK-3 paralogs in the beta-catenin destruction complexes of tapeworms

  • Jimena Montagne
  • Matías Preza
  • Estela Castillo
  • Klaus Brehm
  • Uriel KoziolEmail author
Original Article

Abstract

The Wnt/beta-catenin pathway has many key roles in the development of animals, including a conserved and central role in the specification of the primary (antero-posterior) body axis. The posterior expression of Wnt ligands and the anterior expression of secreted Wnt inhibitors are known to be conserved during the larval metamorphosis of tapeworms. However, their downstream signaling components for Wnt/beta-catenin signaling have not been characterized. In this work, we have studied the core components of the beta-catenin destruction complex of the human pathogen Echinococcus multilocularis, the causative agent of alveolar echinococcosis. We focused on two Axin paralogs that are conserved in tapeworms and other flatworm parasites. Despite their divergent sequences, both Axins could robustly interact with one E. multilocularis beta-catenin paralog and limited its accumulation in a heterologous mammalian expression system. Similarly to what has been described in planarians (free-living flatworms), other beta-catenin paralogs showed limited or no interaction with either Axin and are unlikely to function as effectors in Wnt signaling. Additionally, both Axins interacted with three divergent GSK-3 paralogs that are conserved in free-living and parasitic flatworms. Axin paralogs have highly segregated expression patterns along the antero-posterior axis in the tapeworms E. multilocularis and Hymenolepis microstoma, indicating that different beta-catenin destruction complexes may operate in different regions during their larval metamorphosis.

Keywords

Wnt signaling Cestode Axin B-Catenin Glycogen Synthase Kinase-3 

Notes

Funding information

This work was supported by the Agencia Nacional de Investigación e Innovación (ANII), Uruguay, Grant FCE_2016_125588 (to U.K.) and by the Programa de Desarrollo de las Ciencias Básicas (PEDECIBA), Uruguay. Further support was provided by the Wellcome Trust, grant number 107475/Z/15/Z (to K.B.).

Compliance with ethical standards

Animal experiments were carried out in accordance with European and German regulations on the protection of animals (Tierschutzgesetz). Ethical approval of the study was obtained from the local ethics committee of the government of Lower Franconia, Germany (permit no. 55.2 DMS 2532-2-354) and Comisión Honoraria de Experimentación Animal, Uruguay (Protocol number 10190000025215) .

Supplementary material

427_2019_632_MOESM1_ESM.pdf (438 kb)
Supplementary Figure S1 Alignment of H. sapiens β-catenin with homologs from S. mediterranea and E. multilocularis. (PDF 438 kb)
427_2019_632_MOESM2_ESM.pdf (243 kb)
Supplementary Figure S2 Alignment of the region of H. sapiens GSK-3β that directly contacts Axin-1 with the equivalent region from GSK-3 homologs from E. multilocularis. (PDF 243 kb)
427_2019_632_MOESM3_ESM.xlsx (12 kb)
Supplementary Table S1 List of primers used in this work. (XLSX 11 kb)
427_2019_632_MOESM4_ESM.xlsx (10 kb)
Supplementary Table S2 List of gene codes for homologs of Axin, GSK-3 and BCAT genes in E. multilocularis, H. microstoma, and S. mansoni. (XLSX 9 kb)

References

  1. Abramoff M, Magalhaes P, Ram S (2004) Image processing with ImageJ. Biophoton Int 11:36–42Google Scholar
  2. Adell T, Marsal M, Saló E (2008) Planarian GSK3s are involved in neural regeneration. Dev Genes Evol 218:89–103.  https://doi.org/10.1007/s00427-007-0199-3 CrossRefGoogle Scholar
  3. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME suite: tools for motif discovery and searching. Nucleic Acids Res 37(Suppl 2):W202–W208.  https://doi.org/10.1093/nar/gkp335 CrossRefGoogle Scholar
  4. Beurel E, Grieco SF, Jope RS (2014) Pharmacology & therapeutics glycogen synthase kinase-3 ( GSK3 ): regulation, actions, and diseases. Pharmacol Ther 148:114–131.  https://doi.org/10.1016/j.pharmthera.2014.11.016 CrossRefGoogle Scholar
  5. Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci 92:7297–7301.  https://doi.org/10.1073/pnas.92.16.7297 CrossRefGoogle Scholar
  6. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinf 10:421.  https://doi.org/10.1186/1471-2105-10-421 CrossRefGoogle Scholar
  7. Capra JA, Singh M (2007) Predicting functionally important residues from sequence conservation. Bioinformatics. 23:1875–1882.  https://doi.org/10.1093/bioinformatics/btm270 CrossRefGoogle Scholar
  8. Chai G, Ma C, Bao K, Zheng L, Wang X, Sun Z, Salò E, Adell T, Wu W (2010) Complete functional segregation of planarian β-catenin-1 and -2 in mediating Wnt signaling and cell adhesion. J Biol Chem 285:24120–24130.  https://doi.org/10.1074/jbc.M110.113662 CrossRefGoogle Scholar
  9. Chia IV, Constantini F (2005) Mouse axin and axin2/conductin proteins are functionally equivalent in vivo. Mol Cell Biol 25:4371–4376.  https://doi.org/10.1128/MCB.25.11.4371-4376.2005 CrossRefGoogle Scholar
  10. Dajani R, Fraser E, Roe SM et al (2003) Structural basis for recruitment of glycogen synthase kinase 3β to the axin-APC scaffold complex. EMBO J 22:494–501.  https://doi.org/10.1093/emboj/cdg068 CrossRefGoogle Scholar
  11. Driehuis E, Clevers H (2017) WNT signalling events near the cell membrane and their pharmacological targeting for the treatment of cancer. Br J Pharmacol 174:4547–4563.  https://doi.org/10.1111/bph.13758 CrossRefGoogle Scholar
  12. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797.  https://doi.org/10.1093/nar/gkh340 CrossRefGoogle Scholar
  13. Gurley KA, Rink JC, Alvarado AS (2008) β-Catenin defines head versus tail identity during planarian regeneration and homeostasis. Science 319:323–327.  https://doi.org/10.1126/science.1150029 CrossRefGoogle Scholar
  14. Hermida MA, Dinesh Kumar J, Leslie NR (2017) GSK3 and its interactions with the PI3K/AKT/mTOR signalling network. Adv Biol Regul 65:5–15.  https://doi.org/10.1016/j.jbior.2017.06.003 CrossRefGoogle Scholar
  15. Howe KL, Bolt BJ, Cain S, Chan J, Chen WJ, Davis P, Done J, Down T, Gao S, Grove C, Harris TW, Kishore R, Lee R, Lomax J, Li Y, Muller HM, Nakamura C, Nuin P, Paulini M, Raciti D, Schindelman G, Stanley E, Tuli MA, van Auken K, Wang D, Wang X, Williams G, Wright A, Yook K, Berriman M, Kersey P, Schedl T, Stein L, Sternberg PW (2016) WormBase 2016: expanding to enable helminth genomic research. Nucleic Acids Res 44:D774–D780.  https://doi.org/10.1093/nar/gkv1217 CrossRefGoogle Scholar
  16. Iglesias M, Almuedo-Castillo M, Aboobaker AA, Saló E (2011) Early planarian brain regeneration is independent of blastema polarity mediated by the Wnt/β-catenin pathway. Dev Biol 358:68–78.  https://doi.org/10.1016/j.ydbio.2011.07.013 CrossRefGoogle Scholar
  17. Korswagen HC, Coudreuse DYM, Betist MC et al (2002) The Axin-like protein PRY-1 is a negative regulator of a canonical Wnt pathway in C. elegans. Genes Dev 16:1291–1302.  https://doi.org/10.1101/gad.981802 CrossRefGoogle Scholar
  18. Koziol U (2017) Evolutionary developmental biology (evo-devo) of cestodes. Exp Parasitol 180:84–100.  https://doi.org/10.1016/j.exppara.2016.12.004 CrossRefGoogle Scholar
  19. Koziol U, Rauschendorfer T, Rodríguez LZ et al (2014) The unique stem cell system of the immortal larva of the human parasite Echinococcus multilocularis. EvoDevo 5:10CrossRefGoogle Scholar
  20. Koziol U, Jarero F, Olson PD, Brehm K (2016) Comparative analysis of Wnt expression identifies a highly conserved developmental transition in flatworms. BMC Biol 14:10.  https://doi.org/10.1186/s12915-016-0233-x CrossRefGoogle Scholar
  21. Kremer SA, Erdeniz N, Peterson-Nedry W, Swanson EA, Wehrli M (2010) In vivo analysis in Drosophila reveals differential requirements of contact residues in Axin for interactions with GSK3β or β-catenin. Dev Biol 337:110–123.  https://doi.org/10.1016/j.ydbio.2009.10.016 CrossRefGoogle Scholar
  22. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefGoogle Scholar
  23. Leducq R, Gabrion C (1992) Developmental changes of Echinococcus multilocularis metacestodes revealed by tegumental ultrastructure and lectin-binding sites. Parasitology 104:129–141CrossRefGoogle Scholar
  24. Lee E, Salic A, Krüger R, Heinrich R, Kirschner MW (2003) The roles of APC and axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol 1(1):e10.  https://doi.org/10.1371/journal.pbio.0000010 CrossRefGoogle Scholar
  25. Liu S, Henry I, Brandl H et al (2015) PlanMine – a mineable resource of planarian biology and biodiversity. Nucleic Acids Res 44(D1):D764–D773.  https://doi.org/10.1093/nar/gkv1148 Google Scholar
  26. Luo W, Lin SC (2004) Axin: a master scaffold for multiple signaling pathways. NeuroSignals 13:99–113.  https://doi.org/10.1159/000076563 CrossRefGoogle Scholar
  27. MacDonald BT, Tamai K, He X (2009) Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26.  https://doi.org/10.1016/j.devcel.2009.06.016 CrossRefGoogle Scholar
  28. Metcalfe C, Bienz M (2011) Inhibition of GSK3 by Wnt signalling – two contrasting models. J Cell Sci 124:3537–3544.  https://doi.org/10.1242/jcs.091991 CrossRefGoogle Scholar
  29. Nusse R (2008) Wnt signaling and stem cell control. Cell Res 18:523–527.  https://doi.org/10.1038/cr.2008.47 CrossRefGoogle Scholar
  30. Oosterveen T, Coudreuse DYM, Yang PT, Fraser E, Bergsma J, Dale TC, Korswagen HC (2007) Two functionally distinct Axin-like proteins regulate canonical Wnt signaling in C. elegans. Dev Biol 308:438–448.  https://doi.org/10.1016/j.ydbio.2007.05.043 CrossRefGoogle Scholar
  31. Petersen CP, Reddien PW (2009) A wound-induced Wnt expression program controls planarian regeneration polarity. Proc Natl Acad Sci U S A 106:17061–17066 1–6CrossRefGoogle Scholar
  32. Phillips BT, Kimble J (2009) A new look at TCF and β-catenin through the lens of a divergent C. elegans Wnt pathway. Dev Cell 17:27–34.  https://doi.org/10.1016/j.devcel.2009.07.002 CrossRefGoogle Scholar
  33. Prieto D, Aparicio G, Morande PE, Zolessi FR (2014) A fast, low cost, and highly efficient fluorescent DNA labeling method using methyl green. Histochem Cell Biol 142:335–345.  https://doi.org/10.1007/s00418-014-1215-0 CrossRefGoogle Scholar
  34. Riddiford N, Olson PD (2011) Wnt gene loss in flatworms. Dev Genes Evol 221:187–197.  https://doi.org/10.1007/s00427-011-0370-8 CrossRefGoogle Scholar
  35. Rui Y, Xu Z, Xiong B, Cao Y, Lin S, Zhang M, Chan SC, Luo W, Han Y, Lu Z, Ye Z, Zhou HM, Han J, Meng A, Lin SC (2007) A β-catenin-independent dorsalization pathway activated by Axin/JNK signaling and antagonized by Aida. Dev Cell 13:268–282.  https://doi.org/10.1016/j.devcel.2007.07.006 CrossRefGoogle Scholar
  36. Schittek B, Sinnberg T (2014) Biological functions of casein kinase 1 isoforms and putative roles in tumorigenesis. Mol Cancer 13:231.  https://doi.org/10.1186/1476-4598-13-231 CrossRefGoogle Scholar
  37. Smyth JD, McManus DP (2007) The physiology and biochemistry of cestodes. Cambridge University Press, CambridgeGoogle Scholar
  38. Spiliotis M, Brehm K (2009) Axenic in vitro cultivation of Echinococcus multilocularis metacestode vesicles and the generation of primary cell cultures. Methods Mol Biol 470:245–262.  https://doi.org/10.1007/978-1-59745-204-5_17 CrossRefGoogle Scholar
  39. Su H, Sureda-gomez M, Rabaneda-lombarte N, Gelabert M (2017) A C-terminally truncated form of β-catenin acts as a novel regulator of Wnt / β -catenin signaling in planarians. PLoS Genet 13(10):e1007030CrossRefGoogle Scholar
  40. Takashima S, Gold D, Hartenstein V (2012) Stem cells and lineages of the intestine : a developmental and evolutionary perspective. Dev Genes Evol 223:85–102.  https://doi.org/10.1007/s00427-012-0422-8 CrossRefGoogle Scholar
  41. Valenta T, Hausmann G, Basler K (2012) The many faces and functions of β-catenin. EMBO J 31:2714–2736CrossRefGoogle Scholar
  42. van Kappel EC, Maurice MM (2017) Molecular regulation and pharmacological targeting of the β-catenin destruction complex. Br J Pharmacol 174:4575–4588.  https://doi.org/10.1111/bph.13922 CrossRefGoogle Scholar
  43. Voge M (1964) Development of Hymenolepis microstoma ( Cestoda : Cyclophyllidea ) in the intermediate host Tribolium confusum. J Parasitol 50:77–80CrossRefGoogle Scholar
  44. Xing Y, Clements WK, Kimelman D, Xu W (2003) Crystal structure of a β-catenin/Axin complex suggests a mechanism for the β-catenin destruction complex. Genes Dev 17:2753–2764.  https://doi.org/10.1101/gad.1142603 CrossRefGoogle Scholar
  45. Ye T, Fu AKY, Ip NY (2015) Emerging roles of Axin in cerebral cortical development. Front Cell Neurosci 9:1–8.  https://doi.org/10.3389/fncel.2015.00217 Google Scholar
  46. Zavala-Góngora R, Kroner A, Wittek B, Knaus P, Brehm K (2003) Identification and characterisation of two distinct Smad proteins from the fox-tapeworm Echinococcus multilocularis. Int J Parasitol 33:1665–1677.  https://doi.org/10.1016/S0020-7519(03)00208-X CrossRefGoogle Scholar
  47. Zavala-Góngora R, Derrer B, Gelmedin V et al (2008) Molecular characterisation of a second structurally unusual AR-Smad without an MH1 domain and a Smad4 orthologue from Echinococcus multilocularis. Int J Parasitol 38:161–176.  https://doi.org/10.1016/j.ijpara.2007.07.008 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Sección Biología Celular, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  2. 2.Sección Bioquímica, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  3. 3.Institute of Hygiene and MicrobiologyUniversity of WürzburgWürzburgGermany

Personalised recommendations