Development Genes and Evolution

, Volume 225, Issue 2, pp 105–111 | Cite as

Developmental expression analysis of Na, K-ATPase α subunits in Xenopus

  • Md. Mahfujur Rahman
  • Hyun-Jin Tae
  • Ho-Seong Cho
  • Gee-Wook Shin
  • Byung-Yong ParkEmail author
Sequence Corner


Na, K-ATPase is an integral membrane protein complex responsible for maintaining the ionic gradients of Na+ and K+ across the plasma membrane and has a variety of cellular functions including neuronal activity. Studies in several organisms have shown that this protein complex regulates multiple aspects of embryonic development and is responsible for the pathogenesis of several human diseases. Here, we report the cloning and expression of Na, K-ATPase α2 (atp1a2) and α3 (atp1a3) subunits during Xenopus development and compare the expression patterns of each subunit. Using in situ hybridization in whole embryos and on sections, we show that all three α subunits are co-expressed in the pronephric kidney, with varying expression in neurogenic derivatives. The atp1a2 has a unique expression in the ependymal cell layer of the developing brain that is not shared with other α subunits. The Na, K-ATPase α1 (atp1a1), and atp1a3 share many expression domains in placode derivatives, including the otic vesicle, lens, ganglion of the anterodorsal lateral line nerve, and ganglia of the facial and anteroventral lateral line nerve and olfactory cells. All the subunits share a common expression domain, the myocardium.


Na K-ATPase α subunits Brain Pronephric kidney Eye Placode derivatives Xenopus 



This study was financially supported by grants from the Korea Research Foundation Grant (2011–0014454).

Compliance with ethical standard

Conflict of interest

The authors declare that they have no conflict of interest.

Statement of the welfare of animals

All procedures performed in studies involving animals were in accordance with the ethical standards of the animal welfare regulations of Institutional Animal Care and Use Committees (IACUC), Chonbuk National University Laboratory Animal Centre, Republic of Korea.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. Blanco G (2005) Na,K-ATPase subunit heterogeneity as a mechanism for tissue-specific ion regulation. Semin Nephrol 25:292–303. doi: 10.1016/j.semnephrol.2005.03.004 CrossRefPubMedGoogle Scholar
  2. Blanco G, Xie ZJ, Mercer RW (1993) Functional expression of the alpha 2 and alpha 3 isoforms of the Na,K-ATPase in baculovirus-infected insect cells. Proc Natl Acad Sci USA 90:1824–1828CrossRefPubMedCentralPubMedGoogle Scholar
  3. Crambert G, Hasler U, Beggah AT, Yu C, Modyanov NN, Horisberger JD, Lelievre L, Geering K (2000) Transport and pharmacological properties of nine different human Na, K-ATPase isozymes. J Biol Chem 275:1976–1986CrossRefPubMedGoogle Scholar
  4. Davies CS, Messenger NJ, Craig R, Warner AE (1996) Primary sequence and developmental expression pattern of mRNAs and protein for an alpha1 subunit of the sodium pump cloned from the neural plate of Xenopus laevis. Dev Biol 174:431–447. doi: 10.1124/mol.65.2.335 CrossRefPubMedGoogle Scholar
  5. de Carvalho Aguiar P, Sweadner KJ, Penniston JT, Zaremba J, Liu L, Caton M, Linazasoro G, Borg M, Tijssen MA, Bressman SB, Dobyns WB, Brashear A, Ozelius LJ (2004) Mutations in the Na+/K + − ATPase alpha3 gene ATP1A3 are associated with rapid-onset dystonia parkinsonism. Neuron 43:169–175. doi: 10.1016/j.neuron.2004.06.028 CrossRefPubMedGoogle Scholar
  6. De Fusco M, Marconi R, Silvestri L, Atorino L, Rampoldi L, Morgante L, Ballabio A, Aridon P, Casari G (2003) Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nat Genet 33:192–196CrossRefPubMedGoogle Scholar
  7. Doganli C, Kjaer-Sorensen K, Knoeckel C, Beck HC, Nyengaard JR, Honore B, Nissen P, Ribera A, Oxvig C, Lykke-Hartmann K (2012) The alpha2Na+/K + −ATPase is critical for skeletal and heart muscle function in zebrafish. J Cell Sci 125:6166–6175. doi: 10.1242/jcs.115808 CrossRefPubMedGoogle Scholar
  8. Eid SR, Brandli AW (2001) Xenopus Na,K-ATPase: primary sequence of the beta2 subunit and in situ localization of alpha1, beta1, and gamma expression during pronephric kidney development. Differentiation 68:115–125. doi: 10.1046/j.1432-0436.2001.680205.x CrossRefPubMedGoogle Scholar
  9. Glynn IM (1993) Annual review prize lecture. ‘All hands to the sodium pump’. J Physiol 462:1–30CrossRefPubMedCentralPubMedGoogle Scholar
  10. Heinzen EL, Swoboda KJ, Hitomi Y, Gurrieri F, Nicole S, de Vries B, Tiziano FD, Fontaine B, Walley NM, Heavin S, Panagiotakaki E, Fiori S, Abiusi E, Di Pietro L, Sweney MT, Newcomb TM, Viollet L, Huff C, Jorde LB, Reyna SP, Murphy KJ, Shianna KV, Gumbs CE, Little L, Silver K, Ptacek LJ, Haan J, Ferrari MD, Bye AM, Herkes GK, Whitelaw CM, Webb D, Lynch BJ, Uldall P, King MD, Scheffer IE, Neri G, Arzimanoglou A, van den Maagdenberg AM, Sisodiya SM, Mikati MA, Goldstein DB (2012) De novo mutations in ATP1A3 cause alternating hemiplegia of childhood. Nat Genet 44:1030–1034. doi: 10.1038/ng.2358 CrossRefPubMedCentralPubMedGoogle Scholar
  11. Henriksen C, Kjaer-Sorensen K, Einholm AP, Madsen LB, Momeni J, Bendixen C, Oxvig C, Vilsen B, Larsen K (2013) Molecular cloning and characterization of porcine Na(+)/K(+)-ATPase isoforms alpha1, alpha2, alpha3 and the ATP1A3 promoter. PLoS One 8:e79127. doi: 10.1371/journal.pone.0079127 CrossRefPubMedCentralPubMedGoogle Scholar
  12. Mata M, Siegel GJ, Hieber V, Beaty MW, Fink DJ (1991) Differential distribution of (Na,K)-ATPase alpha isoform mRNAs in the peripheral nervous system. Brain Res 546:47–54CrossRefPubMedGoogle Scholar
  13. McGrail KM, Phillips JM, Sweadner KJ (1991) Immunofluorescent localization of three Na,K-ATPase isozymes in the rat central nervous system: both neurons and glia can express more than one Na,K-ATPase. J Neurosci 11:381–391PubMedGoogle Scholar
  14. Pearson WR, Robins G, Zhang T (1999) Generalized neighbor-joining: more reliable phylogenetic tree reconstruction. Mol Biol Evol 16:806–816CrossRefPubMedGoogle Scholar
  15. Schlosser G, Northcutt RG (2000) Development of neurogenic placodes in Xenopus laevis. J Comp Neurol 418:121–146CrossRefPubMedGoogle Scholar
  16. Schneider JW, Mercer RW, Gilmore-Hebert M, Utset MF, Lai C, Greene A, Benz EJ Jr (1988) Tissue specificity, localization in brain, and cell-free translation of mRNA encoding the A3 isoform of Na+,K + −ATPase. Proc Natl Acad Sci USA 85:284–288CrossRefPubMedCentralPubMedGoogle Scholar
  17. Shull GE, Greeb J, Lingrel JB (1986) Molecular cloning of three distinct forms of the Na+,K + −ATPase alpha-subunit from rat brain. Biochemistry 25:8125–8132CrossRefPubMedGoogle Scholar
  18. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedCentralPubMedGoogle Scholar
  19. Wang J, Schwinger RH, Frank K, Muller-Ehmsen J, Martin-Vasallo P, Pressley TA, Xiang A, Erdmann E, McDonough AA (1996) Regional expression of sodium pump subunits isoforms and Na + −Ca++ exchanger in the human heart. J Clin Invest 98:1650–1658. doi: 10.1172/JCI118960 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Md. Mahfujur Rahman
    • 1
  • Hyun-Jin Tae
    • 2
  • Ho-Seong Cho
    • 1
  • Gee-Wook Shin
    • 1
  • Byung-Yong Park
    • 1
    • 3
    Email author
  1. 1.Bio-Safety Research Institute, College of Veterinary MedicineChonbuk National UniversityJeonjuRepublic of Korea
  2. 2.Institute of Bioscience and BiotechnologyHallym UniversityChuncheonRepublic of Korea
  3. 3.Department of Veterinary Embryology, College of Veterinary MedicineChonbuk National UniversityJeonjuRepublic of Korea

Personalised recommendations