Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

From variable to constant cell numbers: cellular characteristics of the arthropod nervous system argue against a sister-group relationship of Chelicerata and “Myriapoda” but favour the Mandibulata concept

Abstract

In the new debate on arthropod phylogeny, structure and development of the nervous system provide important arguments. The architecture of the brain of Hexapoda, Crustacea and Chelicerata in recent years has been thoroughly compared against an evolutionary background. However, comparative aspects of the nervous systems in these taxa at the cellular level have been examined in only a few studies. This review sets out to summarize these aspects and to analyse the existing data with respect to the concept of individually identifiable neurons. In particular, mechanisms of neurogenesis, the morphology of serotonergic interneurons, the number of motoneurons, and cellular features and development of the lateral eyes are discussed. We conclude that in comparison to the Mandibulata, in Chelicerata the numbers of neurons in the different classes examined are much higher and in many cases are not fixed but variable. The cell numbers in Mandibulata are lower and the majority of neurons are individually identifiable. The characters explored in this review are mapped onto an existing phylogram, as derived from brain architecture in which the Hexapoda are an in-group of the Crustacea, and there is not any conflict of the current data with such a phylogenetic position of the Hexapoda. Nevertheless, these characters argue against a sister-group relationship of “Myriapoda” and Chelicerata as has been recently suggested in several molecular studies, but instead provide strong evidence in favour of the Mandibulata concept.

This is a preview of subscription content, log in to check access.

Fig. 1a–d
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ax P (1999) Das System der Metazoa II. Fischer, Stuttgart

  2. Bähr R (1971) Die Ultrastruktur der Photorezeptoren von Lithobius forficatus L (Chilopoda: Lithobiidae). Z Zellforsch Mikrosk Anat 116:70–93

  3. Bähr R (1972) Licht- und dunkeladaptive Änderungen der Sehzellen von Lithobius forficatus L (Chilopoda: Lithobiidae). Cytobiologie 6(2):214–233

  4. Bähr R (1974) Contribution to the morphology of Chilopod eyes. Symp Zool Soc Lond 32:388–404

  5. Bedini C (1968) The ultrastructure of the eye of the centipede Polybothrus fasciatus (Newport). Monit Zool Ital Suppl 2:31–47

  6. Boyan G, Reichert H, Hirth F (2003) Commissure formation in the embryonic insectbrain. Arthropod Struct Dev 32:61−77

  7. Breidbach O (1995) Is the evolution of the arthropod brain convergent?. In: Breidbach O, Kutsch W (eds) The nervous system of invertebrates: an evolutionary and comparative approach. Birkhäuser, Basel, pp 383–406

  8. Breidbach O, Wegerhoff R (1993) Neuroanatomy of the central nervous system of the harvestman, Rilaena triangularis (HERBST 1799) (Arachnida; Opiliones)–principal organization, Gaba-like and serotonin-immunohistochemistry. Zool Anz 230:55–81

  9. Breidbach O, Dircksen H, Wegerhoff R (1995) Common general morphological pattern of peptidergic neurons in the arachnid brain: crustacean cardioactive peptide-immunoreactive neurons in the protocerebrum of seven arachnid species. Cell Tissue Res 279:183–197

  10. Burmester T (2002) Origin and evolution of arthropod hemocyanins and related proteins. J Comp Physiol B 172:95–107

  11. Burrows M (1996) The neurobiology of an insect brain. Oxford University Press, Oxford

  12. Campos-Ortega JA, Hartenstein V (1997) The embryonic development of Drosophila melanogaster. Springer, Berlin Heidelberg New York

  13. Clarkson ENK (1975) The evolution of the eyes of trilobites. Fossils Strata 4:7–31

  14. Clarkson ENK (1979) The visula system of trilobites. Palaeontology 16:827–840

  15. Clarkson ENK, Zhang X-G (1991) Ontogeny of the carboniferous trilobite Paladin eichwaldi shunnerensis (King 1914). Trans R Soc Edinb Earth Sci 82:277–295

  16. Cook CE, Smith ML, Telford MJ, Bastianello A, Akam M (2001) Hox genes and the phylogeny of the arthropods. Curr Biol 11:759–763

  17. Deshpande N, Dittrich R, Technau GM, Urban J (2001) Successive specification of Drosophila neuroblasts NB 6-4 and NB 7-3 depends on the interaction of the segment polarity genes wingless, gooseberry and naked cuticle. Development 128:3253–3261

  18. Dircksen H (1998) Conserved crustacean cardioactive (CCAP) neuronal networks and functions in arthropod evolution. In: Coast GM, Webster SG (eds) Recent advances in arthropod endocrinology. Cambridge University Press, Cambridge, pp 302–333

  19. Doe CQ, Skeath JB (1996) Neurogenesis in the insect central nervous system. Curr Opin Neurobiol 6:18–24

  20. Doe CQ, Fuerstenberg S, Peng C-Y (1998) Neural stem cells: from fly to vertebrates. J Neurobiol 36:111–127

  21. Dohle W (1997) Myriapod-insect relationships as opposed to an insect-crustacean sister group relationship. In: Fortey RA, Thomas RH (eds) Arthropod relationships, Chapman & Hall, London, pp 305–316

  22. Dohle W (2001) Are the insects terrestrial crustaceans? A discussion of some new facts and arguments and the proposal of the proper name “Tetraconata” for the monophyletic unit Crustacea + Hexapoda. Ann Soc Entomol Fr 37:85–103

  23. Dohle W, Scholtz G (1997) How far does cell lineage influence cell fate specification in crustacean embryos? Semin Cell Dev Biol 8:379–390

  24. Dohle W, Gerberding M, Hejnol A, Scholtz G (2004) Cell lineage, segment differentiation, and gene expression in crustaceans. In: Scholtz G (ed) Evolutionary developmental biology of Crustacea. Crustacean issues, vol 15. Balkema, Lisse, pp 135–167

  25. Dove H, Stollewerk A (2003) Comparative analysis of neurogenesis in the myriapod Glomeris marginata (Diplopoda) suggests more similarities to chelicerates than to insects. Development 130:2161–2171

  26. Duman-Scheel M, Patel NH (1999) Analysis of molecular marker expression reveals neuronal homology in distantly related arthropods. Development 126:2327–2334

  27. Eriksson BJ, Tait NN, Budd GE (2003) Head development in the onychophoran Euperipatoides kanangrensis with particular reference to the central nervous system. J Morphol 255:1–23

  28. Fahrbach SE (2004) What arthropod brains say about arthropod phylogeny. Proc Natl Acad Sci USA 101:3723–3724

  29. Fahrenbach W (1975) The visual system of the horseshoe crab Limulus polyphemus. Int Rev Cytol 41:285–349

  30. Fanenbruck M, Harzsch S, Wägele W (2004) The brain of the Remipedia (Crustacea) and an alternative hypothesis on their phylogenetic relationships. Proc Natl Acad Sci USA 101:3868–3873

  31. Foelix R F (1996) Biology of spiders. Oxford University Press, New York

  32. Fourtner CR, Sherman RG (1973) Chelicerate neuromuscular systems. Am Zool 13:271–289

  33. Friedrich M, Benzer S (2000) Divergent decapentaplegic expression patterns in the compound eye development and the evolution of insect metamorphosis. J Exp Zool 288:39–55

  34. Friedrich M, Tautz D (2001) Arthropod rDNA phylogeny revisited: a consistency analysis using Monte Carlo Simulation. Ann Soc Entomol Fr 37:21–40

  35. Gerberding M (1997) Germ band formation and early neurogenesis of Leptodora kindti (Cladocera): first evidence for neuroblasts in the entomostracan crustaceans. Invertebr Reprod Dev 32:93–73

  36. Gerberding M, Scholtz G (2001) Neurons and glia in the midline of the higher crustacean Orchestia cavimana are generated via an invariant cell lineage that comprises a median neuroblast and glial progenitors. Dev Biol 235:397–409

  37. Gilai A, Parnas I (1970) Neuromuscular physiology of the closer muscle in the pedipalp of the scorpion Leiurus quinquestriatus. J Exp Biol 52:325–344

  38. Giribet G, Edgecombe GD, Wheeler WC (2001) Arthropod phylogeny based on eight molecular loci and morphology. Nature 413(6852):121–122

  39. Goodman CS, Doe CQ (1993) Embryonic development of the Drosophila central nervous system. In: Bate M, Martinez-Arias A (eds) The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp 1131–1207

  40. Govind CK, Wiens TJ (1985) Innervation of the limb accessory flexor muscle in several decapod crustaceans. I: Anatomy. J Neurobiol 16:317–328

  41. Grenacher H (1880) Über die Augen einiger Myriapoden. Arch Mikrosk Anat 18:415–467

  42. Haas F, Waloszek D, Hartenberger R (2003) Devonohexapodus blocksbergensis, a new marine hexapod from the Lower Devonian Hunsrück Slates, and the origin of Atelocerata and Hexapoda. Org Divers Evol 3:39–54

  43. Hafner GS, Tokarski TR (2001) Retinal development in the lobster Homarus americanus: comparison with compound eyes of insects and other crustaceans. Cell Tissue Res 305:147–158

  44. Harzsch S (2001a) Entwicklung des Nervensystems der Crustacea: ein Beitrag zur Phylogenie der Arthropoda. Habilitationsschrift, Universität Bielefeld, Bielefeld, pp 1–296

  45. Harzsch S (2001b) Neurogenesis in the crustacean ventral nerve cord: homology of neuronal stem cells in Malacostraca and Branchiopoda?. Evol Dev 3:154–169

  46. Harzsch S (2002a) From stem cell to structure: neurogenesis in decapod crustaceans. In: Wiese K (ed) The crustacean nervous system. Springer, Berlin Heidelberg New York, pp 417–432

  47. Harzsch S (2002b) The phylogenetic significance of crustacean optic neuropils and chiasmata: a re-examination. J Comp Neurol 453:10–21

  48. Harzsch S (2002c) Neurobiologie und Evolutionsforschung: “Neurophylogenie” und die Stammesgeschichte der Euarthropoda. Neuroforum 4:267–273

  49. Harzsch S (2003a) Ontogeny of the ventral nerve cord in malacostracan crustaceans: a common plan for neuronal development in Crustacea and Hexapoda? Arthropod Struct Dev 32:17–38

  50. Harzsch S (2003b) Evolution of identified arthropod neurons: the serotonergic system in relation to engrailed-expressing cells in the embryonic ventral nerve cord of the American lobster Homarus americanus Milne Edwards, 1873 (Malacostraca, Pleocyemata, Homarida). Dev Biol 258:44–56

  51. Harzsch S (2004a) The arthropod tritocerebrum: a “non-drosophilocentric” perspective. Evol Dev 6:303–309

  52. Harzsch S (2004b) Phylogenetic comparison of serotonin-immunoreactive neurons in representatives of the Chilopoda, Diplopoda and Chelicerata: implications for arthropod relationships. J Morphol 259:198–213

  53. Harzsch S, Walossek D (2000) Serotonin-immunoreactive neurons in the ventral nerve cord of Crustacea: a character to study aspects of arthropod phylogeny. Arthropod Struct Dev 29:307–322

  54. Harzsch S, Walossek D (2001) Neurogenesis in the developing visual system of the branchiopod crustacean Triops longicaudatus (LeConte, 1846): corresponding patterns of compound-eye formation in Crustacea and Insecta?. Dev Genes Evol 211:37–43

  55. Harzsch S, Benton J, Dawirs RR, Beltz B (1999) A new look at embryonic development of the visual system in decapod crustaceans: neuropil formation, neurogenesis and apoptotic cell death. J Neurobiol 39:294–306

  56. Harzsch S, Sandeman D, Chaigneau J (2004) Morphology and development of the central nervous system. In: Forest J, von Vaupel Klein JC (eds) Treatise on Zoology—Crustacea. Koninklijke Brill, Leiden (in press)

  57. Heckmann R, Kutsch W (1995) Motor supply of the dorsal longitudinal muscles. II. Comparison of motoneuron sets in Tracheata. Zoomorphology 115:197–211

  58. Hertel W, Pass G (2002) An evolutionary treatment of the morphology and physiology of circulatory organs in insects. Comp Biochem Physiol A 133:555–575

  59. Hilken G (1998) Vergleich von Tracheensystemen unter phylogenetischen Aspekten. Verh Naturwiss Ver Hamburg 37:5–94

  60. Hwang UW, Friedrich M, Tautz D, Park CJ, Kim W (2001) Mitochondrial protein phylogeny joins myriapods with chelicerates. Nature 413:154–157

  61. Isshiki T, Pearson B, Holbrook S, Doe CQ (2001) Drosophila neuroblasts sequentially express transciption factors which specify the temporal identity of their neuronal progeny. Cell 106:511–521

  62. Jaenicke E, Decker H, Gebauer W, Marks J, Burmester T (1999) Identification, structure and properties of hemocyanins from diplopod Myriapoda. J Biol Chem 274:29071–29074

  63. Kadner D, Stollewerk (2004) Neurogenesis in the chilopod Lithobius forficatus suggests more similarities to chelicerates than to insects. Dev Genes Evol. DOI 10.1007/s00427-004-0419-z

  64. Klass KD, Kristensen NP (2001) The ground plan and affinities of hexapods: recent progress and open problems. In: Deuve T (ed) Origin of the Hexapoda. Ann Soc Entomol Fr 37:265–581

  65. Kraus O (1997) Phylogenetic relationships between higher taxa of tracheate arthropods. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman & Hall, London, pp 295–304

  66. Kraus O (2001) “Myriapoda” and the ancestry of Hexapoda. In: Deuve T (ed) Origin of the Hexapoda. Ann Soc Entomol Fr 37:105–127

  67. Kraus O (2003) Fossil giants and surviving dwarfs. Arthropleurida and Pselaphognatha (Atelocerata, Diplopoda): characters, phylogenetic relationships and construction. Verh Naturwiss Ver Hamburg 40:5–50

  68. Kusche H, Burmester T (2001) Diplopod hemacyanin sequence and the phylogenetic position of the Myriapoda. Mol Biol Evol 18:1566–1573

  69. Kusche K, Ruhberg H, Burmester T (2002) A hemocaynin from the Onychophora and the emergence of respiratory proteins. Proc Natl Acad Sci USA 99:10545–10548

  70. Kutsch W, Breidbach O (1994) Homologous structures in the nervous system of Arthropoda. Adv Insect Physiol 24:1–113

  71. Loesel R, Strausfeld NJ (2003) Common design in brains of velvet worms and chelicerates and their phylogenetic relationships. In: Elsner N, Zimmermann H (eds) The neurosciences from basic research to therapy. Thieme, Stuttgart, p 677

  72. Loesel R, Nässel DR, Strausfeld NJ (2002) Common design in a unique midline neuropil in the brains of arthropods. Arthropod Struct Dev 31:77–91

  73. Mallatt JM, Garey JR, Shultz JW (2004) Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol Phylogenet Evol 31:178–191

  74. Matsuzaki F (2000) Asymmetric division of Drosophila neural stem cells: a basis for neural diversity. Curr Opin Neurobiol 10:38–44

  75. McMahon BR (2001) Control of cardiovascular function and its evolution in Crustacea. J Exp Biol 204:923–932

  76. Meadors S, McGuiness C, Dodge FA, Barlow RB (2001) Growth, visual field, and resolution in the juvenile Limulus lateral eye. Biol Bull 201:272–274

  77. Melzer RR, Diersch R, Nicastro D, Smola U (1997) Compound eye evolution: highly conserved retinula and cone cell patterns indicate a common origin of the insect and crustacean ommatidium. Naturwissenschaften 84:542–544

  78. Melzer R, Michalke C, Smola U (2000) Walking on insect paths: early ommatidial development in the compound eye of the ancestral crustacean Triops cancriformis. Naturwissenschaften 87:308–311

  79. Mittmann B (2002) Early neurogenesis in the horseshoe crab and its implication for arthropod relationships. Biol Bull 203:221–222

  80. Mittmann B, Scholtz G (2003) Development of the nervous system in the “head” of Limulus polyphemus (Chelicerata: Xiphosura): morphological evidence for a correspondence between the segments of the chelicerae and of the (first) antennae of Mandibulata. Dev Genes Evol 213:9–17

  81. Moffett S, Yox DP, Kahan LB, Ridgway RL (1987) Innervation of the anterior and posterior levator muscles of the fifth leg of the crab Carcinus maenas. J Exp Biol 127:229–248

  82. Müller C, Rosenberg J, Richter S, Meyer-Rochow VB (2003) The compound eye of Scutigera coleoptrata (Linnaeus, 1758) (Chilopoda: Notostigmophora): an ultrastructural re-investigation that adds support to the Mandibulata-concept. Zoomorphology 122:191–209

  83. Nielsen C (2001) Animal evolution—interrelationships of the living phyla, 2nd edn. Oxford University Press, Oxford, pp 1–563

  84. Nilsson D, Osorio D (1997) Homology and parallelism in arthropod sensory processing. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman & Hall, London, pp 333–348

  85. Novotny T, Eiselt R, Urban J (2002) Hunchback is required for the specification of the early sublineage of neuroblast 7-3 in the Drosophila central nervous system. Development 129:1027–1036

  86. Paulus HF (1979) Eye structure and the monophyly of the Arthropoda. In: Gupta AP (ed) Arthropod phylogeny. van Nostrand Reinhold, New York, pp 299–383

  87. Paulus HF (1986) Evolutionswege zum Larvalauge der Insekten—ein Modell für die Entstehung und die Ableitung der ozellulären Lateralaugen der Myriapoda von Fazettenaugen. Zool J Syst 113:353–371

  88. Paulus HF (2000) Phylogeny of the Myriapoda-Crustacea-Insecta: a new attempt using photoreceptor structure. J Zool Syst Evol Res 38:189–208

  89. Peitsalmi M, Pajunen VI (1992) Eye growth in Choneiulus palmatus and Napoiulus kochii (Diplopoda, Blaniulidae). Ann Zool Fenn 29:39–46

  90. Peterson KJ, Eernisse DJ (2001) Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evol Dev 3:170–205

  91. Pisani D, Poling LL, Lyons-Weiler M, Hedges SB (2004) The colonization of land by animals: molecular phylogeny and divergence times among arthropods. BMC Biol 2:1

  92. Regier JC, Shultz JW (2001a) Elongation factor-2: a useful gene for arthropod phylogenetics. Mol Phylogenet Evol 20:136–148

  93. Regier JC, Shultz JW (2001b) A phylogenetic analysis of Myriapoda (Arthropoda) using two nuclear protein-encoding genes. Zool J Linn Soc 132:469–486

  94. Richter S (1999) The structure of the ommatidia of the Malacostraca (Crustacea)—a phylogenetic approach. Verh Naturwiss Ver Hamburg 38:161–204

  95. Richter S (2002) The Tetraconata concept: hexapod-crustacean relationships and the phylogeny of Crustacea. Org Divers Evol 2:217–237

  96. Root TM, Bowerman RF (1979) Neuromuscular physiology of scorpion leg muscles. Am Zool 19:993

  97. Schliwa M, Fleissner G (1979) Arhabdomeric cells of the median eye retina of scorpions. J Comp Physiol 130:265–270

  98. Schliwa M, Fleissner G (1980) The lateral eyes of the scorpion, Androctonus australis. Cell Tissue Res 206:95–114

  99. Schmid A, Becherer C (1996) Leucokinin-like immunoreactive neurones in the central nervous system of the spider Cupiennius salei. Cell Tissue Res 284:143–152

  100. Schmid A, Becherer C (1999) Distribution of histamine in the CNS of different spiders. Microsc Res Tech 44:81–93

  101. Scholtz G, Dohle W (1996) Cell lineage and cell fate in crustacean embryos-a comparative approach. Int J Dev Biol 37:211–220

  102. Seyfarth EA, Hammer K, Grünot U (1990) Serotonin-immunoreactive cells in the CNS of spiders. Verh Dtsch Zool Ges 83:640

  103. Seyfarth EA, Hammer K, Spörhase-Eichmann U, Hörner M, Vullings HGB (1993) Octopamine immunoreactive neurons in the fused central nervous system of spiders. Brain Res 611:197–206

  104. Shultz JW, Regier JC (2000) Phylogenetic analysis of arthropods using two nuclear protein-encoding genes supports a crustacean + hexapod clade. Proc R Soc Lond B 267:1011–1019

  105. Sinakevitch I, Douglass JK, Scholtz G, Loesel R, Strausfeld NJ (2003) Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa. J Comp Neurol 467:150–172

  106. Skeath JB (1999) At the nexus between pattern formation and cell-type specification: the generation of individual neuroblast fates in the Drosophila embryonic nervous system. BioEssays 21:922–931

  107. Spies T (1981) Structure and phylogenetic interpretation of diplopod eyes (Dilopoda). Zoomorphology 98:241–260

  108. Spreitzer A, Melzer RR (2003) The nymphal eye of Parabuthus transvaalicus Purcell, 1899 (Buthidae): an accessory lateral eye in a scorpion. Zool Anz 242:137–143

  109. Stollewerk A (2002) Recruitment of cell groups through Delta/Notch signalling during spider neurogenesis. Development 129:5339–5348

  110. Stollewerk A, Weller M, Tautz D (2001) Neurogenesis in the spider Cupiennius salei. Development 128:2673–2688

  111. Stollewerk A, Tautz D, Weller M (2003) Neurogenesis in the spider: new insights from comparative analysis of morphological processes and gene expression patterns. Arthropod Struct Dev 32:5–16

  112. Strausfeld NJ (1998) Crustacean-insect relationships: the use of brain characters to derive phylogeny amongst segmented invertebrates. Brain Behav Evol 52:186–206

  113. Strausfeld NJ, Barth FG (1993) Two visual systems in one brain: neuropils serving the secondary eyes of the spider Cupiennius salei. J Comp Neurol 328:43–62

  114. Strausfeld NJ, Hildebrand JG (1999) Olfactory systems: common design, uncommon origins? Curr Opin Neurobiol 9:634–640

  115. Strausfeld NJ, Welzzien P, Barth FG (1993) Two visual systems in one brain: neuropils serving the principal eyes of the spider Cupiennius salei. J Comp Neurol 328:63–75

  116. Strausfeld NJ, Buschbeck EK, Gomez RS (1995) The arthropod mushroom body: its functional roles, evolutionary enigmas and mistaken identities. In: Breidbach O, Kutsch W (eds) The nervous system of invertebrates: an evolutionary and comparative approach. Birkhäuser, Basel, pp 349–406

  117. Strausfeld NL, Hansen L, Li Y, Gomez RS (1998) Evolution, discovery, and interpretations of arthropod mushroom bodies. Learn Mem 5:11–37

  118. Thomas JB, Bastiani MJ, Bate M, Goodman CS (1984) From grasshopper to Drosophila: a common plan for neuronal development. Nature 310:203–207

  119. Truman JW, Ball EE (1998) Patterns of embryonic neurogenesis in a primitive wingless insect, the silverfish, Ctenolepisma longicaudata: comparison with those seen in flying insects. Dev Genes Evol 208:357–368

  120. Walossek D (1999) On the Cambrian diversity of Crustacea. In: Schram FR, von Vaupel Klein JC (eds) Crustaceans and the biodiversity crisis. Proceedings of the 4th international Crustacean congress. Brill, Leiden, pp 3–27

  121. Waloszek D (2003) Cambrian “Orsten”-type preserved arthropods and the phylogeny of Crustacea. In: Legakis A, Sfenthourakis S, Polymeni R, Theealou-Legaki M (eds) Proceedings of the 18th international congress of zoology. Pensoft, Sofia, pp 69–87

  122. Waterman TH (1954) Relative growth and the compound eye in Xiphosura. J Morphol 54:125–158

  123. Wegerhoff R, Breidbach O (1995) Comparative aspects of the chelicerate nervous system. In: Breidbach O, Kutsch W (eds) The nervous systems of invertebrates: an evolutionary and comparative approach. Birkhäuser, Basel, pp 159–180

  124. Westheide W, Rieger R (1996) Spezielle Zoologie. Fischer, Stuttgart

  125. Whitington PM (1995) Conservation versus change in early axogenesis in arthropod embryos: a comparison between myriapods, crustaceans, and insects. In: Breidbach O, Kutsch W (eds) The nervous system of invertebrates: an evolutionary and comparative approach. Birkhäuser, Basel, pp 181–220

  126. Whitington PM (1996) Evolution of neuronal development in arthropods. Semin Cell Dev Biol 7:605–614

  127. Whitington PM (2004) The development of the crustacean nervous system. In: Scholtz G (ed) Evolutionary developmental biology of Crustacea. Crustacean issues, vol 15. Balkema, Lisse, pp 135–167

  128. Whitington PM, Bacon JP (1997) The organization and development of the arthropod ventral nerve cord: insights into arthropod relationships. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman & Hall, London, pp 295–304

  129. Whitington PM, Meier T, King P (1991) Segmentation, neurogenesis and formation of early axonal pathways in the centipede, Ethmostigmus rubripes (Brandt). Roux’s Arch Dev Biol 199:349–363

  130. Whitington PM, Leach D, Sandeman R (1993) Evolutionary change in neural development within the arthropods: axogenesis in the embryos of two crustaceans. Development 118:449–461

  131. Wiens TJ (1976) Electrical and structural properties of crayfish claw motoneurons in isolated claw-ganglion preparation. J Comp Physiol A 112:213–233

  132. Wiens TJ (1989) Common and specific inhibition in leg muscles of decapods: sharpened distinctions. J Neurobiol 20:458–469

  133. Wiens TJ, Wolf H (1993) The inhibitory motoneurons of crayfish thoracic limbs: identification, structures, and homology with insect common inhibitors. J Comp Neurol 336:261–278

  134. Wiersma CAG (1941) The inhibitory nerve supply of the leg muscles of different decapod crustaceans. J Comp Neurol 74: 63–79

  135. Wiersma CAG, Ripley SH (1952) Innervating patterns of crustacean limbs. Physiol Comp Oecol 2:391–405

  136. Wildt M, Harzsch S (2002) A new look at an old visual system: structure and development of the compound eyes and optic ganglia of the brine shrimp Artemia salina Linnaeus, 1758 (Branchiopoda, Anostraca). J Neurobiol 52:117–132

  137. Wirkner CS, Pass G (2002) The circulatory system in Chilopoda: functional morphology and phylogenetic aspects. Acta Zool 83:193–202

  138. Wolf H, Harzsch S (2002a) Evolution of the arthropod neuromuscular system. 1. Arrangement of muscles and excitatory innervation in the walking legs of the scorpion Vaejovis spinigerus (Wood, 1863) (Vaejovidae, Scorpiones, Arachnida). Arthropod Struct Dev 31:185–202

  139. Wolf H, Harzsch S (2002b) Evolution of the arthropod neuromuscular system. 2. Inhibitory innervation of the walking legs of the scorpion Vaejovis spinigerus (Wood, 1863) (Vaejovidae, Scorpiones, Arachnida). Arthropod Struct Dev 31:203–215

  140. Wolf H, Lang DM (1994) Origin and clonal relationship of common inhibitory motoneurons CI1 and CI3 in the locust CNS. J Neurobiol 25:846–864

  141. Zhang X-G, Clarkson ENK (1990) The eyes of Lower Cambrian eodiscid trilobites. Palaeontology 33:911–932

Download references

Acknowledgements

S.H. is a Heisenbergfellow of the DFG.

Author information

Correspondence to Steffen Harzsch.

Additional information

Edited by D. Tautz

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Harzsch, S., Müller, C.H.G. & Wolf, H. From variable to constant cell numbers: cellular characteristics of the arthropod nervous system argue against a sister-group relationship of Chelicerata and “Myriapoda” but favour the Mandibulata concept. Dev Genes Evol 215, 53–68 (2005). https://doi.org/10.1007/s00427-004-0451-z

Download citation

Keywords

  • Tetraconata
  • Phylogeny
  • Arthropoda
  • Evolution