Advertisement

Automatic place-value activation in magnitude-irrelevant parity judgement

  • Krzysztof CiporaEmail author
  • Mojtaba Soltanlou
  • Stefan Smaczny
  • Silke M. Göbel
  • Hans-Christoph Nuerk
Original Article

Abstract

Research on multi-digit number processing suggests that, in Arabic numerals, their place-value magnitude is automatically activated, whenever a magnitude-relevant task was employed. However, so far, it is unknown, whether place-value is also activated when the target task is magnitude-irrelevant. The current study examines this question using the parity congruency effect in two-digit numbers: It describes that responding to decade-digit parity congruent numbers (e.g., 35, 46; same parity of decades and units) is faster than to decade-digit parity incongruent numbers (e.g., 25; 36; different parities of decades and units). Here we investigate the (a-) symmetry of the parity congruency effect; i.e. whether it makes a difference whether participants are assessing the parity of the unit digit or the decade digit. We elaborate, how and why such an asymmetry is related to place-value processing, because the parity of the unit digit only interferes with the parity of the decade digit, while the parity of the decade digit interferes with both the parity of the unit digit and the integrated parity of the whole two-digit number. We observed a significantly larger parity congruency effect in the decade parity decision than in the unit parity decision. This suggests that automatic place-value processing also takes place in a typical parity judgment task, in which magnitude is irrelevant. Finally, because of the cross-lingual design of the study, we can show that these results and their implications were language-independent.

Notes

Acknowledgements

We would like to thank all the participants. This research was funded by a DFG grant [NU 265/3-1] to HCN supporting KC and MS. KC, MS, and HCN are further supported by the LEAD Graduate School and Research Network [GSC1028], which is funded within the framework of the Excellence Initiative of the German federal and state governments. MS is also supported by the Institutional Strategy of the University of Tübingen (Deutsche Forschungsgemeinschaft, ZUK 63). Finally, we thank our assistants Florine Winkler, Lia Heubner and Marie-Lene Schlenker, who helped with data collection and Julianne Skinner for proofreading the manuscript.

Funding

This research was funded by a DFG grant [NU 265/3-1] to HCN supporting KC and MS.

Compliance to the ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Bahnmueller, J., Maier, C. A., Göbel, S. M., & Moeller, K. (2019). Direct evidence for linguistic influences in two-digit number processing. Journal of Experimental Psychology, Learning, Memory, and Cognition,45(6), 1142–1150.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Bahnmueller, J., Moeller, K., Mann, A., & Nuerk, H.-C. (2015). On the limits of language influences on numerical cognition–no inversion effects in three-digit number magnitude processing in adults. Frontiers in Psychology,6, 1216.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Brysbaert, M. (2019). How many participants do we have to include in properly powered experiments? A tutorial of power analysis with reference tables. Journal of Cognition,2(3), 16.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Cipolotti, L., & Butterworth, B. (1995). Toward a multiroute model of number processing: Impaired number transcoding with preserved calculation skills. Journal of Experimental Psychology: General,124(4), 375–390.CrossRefGoogle Scholar
  5. Cipora, K., & Nuerk, H.-C. (2013). Is the SNARC effect related to the level of mathematics? No systematic relationship observed despite more power, more repetitions, and more direct assessment of arithmetic skill. The Quarterly Journal of Experimental Psychology,66(10), 1974–1991.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Cipora, K., Schroeder, P. A., Soltanlou, M., & Nuerk, H.-C. (2018). More space, better mathematics: Is space a powerful tool or a cornerstone for understanding arithmetic? In K. S. Mix & M. T. Battista (Eds.), Visualizing mathematics: The role of spatial reasoning in mathematical thought (pp. 77–116). Cham: Springer International Publishing.CrossRefGoogle Scholar
  7. Cipora, K., Soltanlou, M., Reips, U.-D., & Nuerk, H.-C. (2019a). The SNARC and MARC effects measured online: Large-scale assessment methods in flexible cognitive effects. Behavior Research Methods,51(4), 1676–1692.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Cipora, K., van Dijck, J.-P., Georges, C., Masson, N., Goebel, S., Willmes, K., M. Pesenti, C. Schiltz, Nuerk, H.-C. (2019). A Minority pulls the sample mean: on the individual prevalence of robust group-level cognitive phenomena–the instance of the SNARC effect, Preprint on https://psyarxiv.com/bwyr3/
  9. Dehaene, S. (2001). Précis of the number sense. Mind and Language,16(1), 16–36.CrossRefGoogle Scholar
  10. Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General,122(3), 371–396.CrossRefGoogle Scholar
  11. Dehaene, S., Dupoux, E., & Mehler, J. (1990). Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison. Journal of Experimental Psychology: Human Perception and Performance,16(3), 626–641.PubMedPubMedCentralGoogle Scholar
  12. Dowker, A., & Nuerk, H.-C. (2016). Linguistic influences on mathematics. Frontiers in Psychology,7, 1035.PubMedPubMedCentralGoogle Scholar
  13. Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Attention, Perception, and Psychophysics,16(1), 143–149.CrossRefGoogle Scholar
  14. Fias, W., Brysbaert, M., Geypens, F., & d’Ydewalle, G. (1996). The importance of magnitude information in numerical processing: Evidence from the SNARC effect. Mathematical Cognition,2(1), 95–110.CrossRefGoogle Scholar
  15. Fischer, M. H., & Shaki, S. (2014). Spatial associations in numerical cognition—From single digits to arithmetic. The Quarterly Journal of Experimental Psychology,67(8), 1461–1483.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Ganor-Stern, D., & Tzelgov, J. (2008). Across-notation automatic numerical processing. Journal of Experimental Psychology. Learning, Memory, and Cognition,34(2), 430–437.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Ganor-Stern, D., Tzelgov, J., & Ellenbogen, R. (2007). Automaticity and two-digit numbers. Journal of Experimental Psychology: Human Perception and Performance,33(2), 483–496.PubMedPubMedCentralGoogle Scholar
  18. García-Orza, J., Estudillo, A. J., Calleja, M., & Rodríguez, J. M. (2017). Is place-value processing in four-digit numbers fully automatic? Yes, but not always. Psychonomic Bulletin and Review,24(6), 1906–1914.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Göbel, S. M., Moeller, K., Pixner, S., Kaufmann, L., & Nuerk, H.-C. (2014). Language affects symbolic arithmetic in children: the case of number word inversion. Journal of Experimental Child Psychology,119, 17–25.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Harris, T., Scheuringer, A., & Pletzer, B. (2018). Sex differences and functional hemispheric asymmetries during number comparison. Biology of Sex Differences,9(1), 3.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Henik, A., & Tzelgov, J. (1982). Is three greater than five: The relation between physical and semantic size in comparison tasks. Memory and Cognition,10(4), 389–395.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Heubner, L., Cipora, K., Soltanlou, M., Schlenker, M.-L., Lipowska, K., Goebel, S. M., & Nuerk, H.-C. (2018). A mental odd-even continuum account: Some numbers may be “more odd” than others, and some numbers may be “more even” than others. Frontiers in Psychology,9, 1081.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Hines, T. M. (1990). An odd effect: Lengthened reaction times for judgments about odd digits. Memory and Cognition,18(1), 40–46.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Hohol, M., Cipora, K., Willmes, K., & Nuerk, H.-C. (2017). Bringing back the balance: domain-general processes are also important in numerical cognition. Frontiers in Psychology, 8, 499.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Hommel, B. (2003). Spatial asymmetries in the flanker-congruency effect: Attentional scanning is biased by flanker orientation. Psychology Science,45(1), 63–77.Google Scholar
  26. Hopko, D. R., Mahadevan, R., Bare, R. L., & Hunt, M. K. (2003). The abbreviated math anxiety scale (AMAS) construction, validity, and reliability. Assessment,10(2), 178–182.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Huber, S., Klein, E., Graf, M., Nuerk, H.-C., Moeller, K., & Willmes, K. (2015). Embodied markedness of parity? Examining handedness effects on parity judgments. Psychological Research,79(6), 963–977.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Huber, S., Klein, E., Willmes, K., Nuerk, H.-C., & Moeller, K. (2014). Decimal fraction representations are not distinct from natural number representations—evidence from a combined eye-tracking and computational modeling approach. Frontiers in Human Neuroscience,8, 172.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Huber, S., Nuerk, H.-C., Reips, U.-D., & Soltanlou, M. (2019). Individual differences influence two-digit number processing, but not their analogmagnitude processing: a large-scale online study. Psychological Research, 83(7), 1444–1464.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Huber, S., Nuerk, H.-C., Willmes, K., & Moeller, K. (2016). A general model framework for multisymbol number comparison. Psychological Review,123(6), 667–695.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Imbo, I., Vanden Bulcke, C., De Brauwer, J., & Fias, W. (2014). Sixty-four or four-and-sixty? The influence of language and working memory on children’s number transcoding. Frontiers in Psychology,5, 313.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Iversen, W., Nuerk, H.-C., Jäger, L., & Willmes, K. (2006). The influence of an external symbol system on number parity representation, or What’s odd about 6? Psychonomic Bulletin and Review,13(4), 730–736.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Iversen, W., Nuerk, H.-C., & Willmes, K. (2004). Do signers think differently? The processing of number parity in deaf participants. Cortex,40(1), 176–178.PubMedCrossRefGoogle Scholar
  34. Kallai, A. Y., & Tzelgov, J. (2012). The place-value of a digit in multi-digit numbers is processed automatically. Journal of Experimental Psychology. Learning, Memory, and Cognition,38(5), 1221–1233.PubMedCrossRefGoogle Scholar
  35. Knops, A., Nuerk, H.-C., Sparing, R., Foltys, H., & Willmes, K. (2006). On the functional role of human parietal cortex in number processing: How gender mediates the impact of a ‘virtual lesion’induced by rTMS. Neuropsychologia,44(12), 2270–2283.PubMedCrossRefGoogle Scholar
  36. Krajcsi, A., Lengyel, G., & Laczkó, Á. (2018). Interference between number magnitude and parity. Experimental Psychology,65, 71–83.PubMedCrossRefGoogle Scholar
  37. Krajcsi, A., & Szabó, E. (2012). The role of number notation: sign-value notation number processing is easier than place-value. Frontiers in Psychology,3, 463.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Macizo, P. (2017). Conflict resolution in two-digit number processing: evidence of an inhibitory mechanism. Psychological Research,81(1), 219–230.PubMedCrossRefGoogle Scholar
  39. Macizo, P., & Herrera, A. (2008). The effect of number codes in the comparison task of two-digit numbers. Psicológica,29(1), 1–34.Google Scholar
  40. Macizo, P., Herrera, A., Román, P., & Martín, M. C. (2011). The processing of two-digit numbers in bilinguals. British Journal of Psychology,102(3), 464–477.PubMedCrossRefPubMedCentralGoogle Scholar
  41. MacLeod, C. M. (1991). Half a century of research on the stroop effect: An integrative review. Psychological Bulletin,109(2), 163–203.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Meyerhoff, H. S., Moeller, K., Debus, K., & Nuerk, H.-C. (2012). Multi-digit number processing beyond the two-digit number range: A combination of sequential and parallel processes. Acta Psychologica,140(1), 81–90.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Moeller, K., Huber, S., Nuerk, H. C., & Willmes, K. (2011). Two-digit number processing: holistic, decomposed or hybrid? A computational modelling approach. Psychological Research,75(4), 290–306.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Moeller, K., Klein, E., Nuerk, H.-C., & Willmes, K. (2013). Magnitude representation in sequential comparison of two-digit numbers is not holistic either. Cognitive Processing,14(1), 51–62.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Moeller, K., Nuerk, H.-C., & Willmes, K. (2009). Internal number magnitude representation is not holistic, either. European Journal of Cognitive Psychology,21(5), 672–685.CrossRefGoogle Scholar
  46. Moeller, K., Shaki, S., Göbel, S. M., & Nuerk, H.-C. (2015). Language influences number processing—a quadrilingual study. Cognition,136, 150–155.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Nuerk, H.-C., Bauer, F., Krummenacher, J., Heller, D., & Willmes, K. (2005a). The power of the mental number line: How the magnitude of unattended numbers affects performance in an Eriksen task. Psychology Science,47(1), 34–50.Google Scholar
  48. Nuerk, H.-C., Iversen, W., & Willmes, K. (2004). Notational modulation of the SNARC and the MARC (linguistic markedness of response codes) effect. Quarterly Journal of Experimental Psychology Section A,57(5), 835–863.CrossRefGoogle Scholar
  49. Nuerk, H.-C., Klein, E., & Willmes, K. (2013). Zahlenverarbeitung und Rechnen. In F. Schneider & G. R. Fink (Eds.), Funktionelle MRT in psychiatrie und neurologie (pp. 443–455). Berlin: Springer.CrossRefGoogle Scholar
  50. Nuerk, H.-C., Moeller, K., & Willmes, K. (2015). Multi-digit number processing: overview, conceptual clarifications, and language influences. In R. Cohen Kadosh & A. Dowker (Eds.), The Oxford handbook of numerical cognition (pp. 106–139). Oxford: Oxford University Press.Google Scholar
  51. Nuerk, H.-C., Weger, U., & Willmes, K. (2001). Decade breaks in the mental number line? Putting the tens and units back in different bins. Cognition,82(1), B25–B33.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Nuerk, H.-C., Weger, U., & Willmes, K. (2005b). Language effects in magnitude comparison: Small, but not irrelevant. Brain and Language,92(3), 262–277.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Nuerk, H.-C., & Willmes, K. (2005). On the magnitude representations of two-digit numbers. Psychology Science,47(1), 52–72.Google Scholar
  54. Pixner, S., Moeller, K., Hermanova, V., Nuerk, H.-C., & Kaufmann, L. (2011). Whorf reloaded: language effects on nonverbal number processing in first grade—A trilingual study. Journal of Experimental Child Psychology,108(2), 371–382.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Ratcliff, R., & McKoon, G. (2018). Modeling numerosity representation with an integrated diffusion model. Psychological Review,125(2), 183–217.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Ratcliff, R., Thompson, C. A., & McKoon, G. (2015). Modeling individual differences in response time and accuracy in numeracy. Cognition,137, 115–136.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Ratinckx, E., Nuerk, H.-C., van Dijck, J.-P., & Willmes, K. (2006). Effects of interhemispheric communication on two-digit Arabic number processing. Cortex,42(8), 1128–1137.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology,18(6), 643–662.CrossRefGoogle Scholar
  59. Tan, S., & Dixon, P. (2011). Repetition and the SNARC effect with one-and two-digit numbers. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale,65(2), 84–97.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Van Rinsveld, A., Schiltz, C., Landerl, K., Brunner, M., & Ugen, S. (2016). Speaking two languages with different number naming systems: What implications for magnitude judgments in bilinguals at different stages of language acquisition? Cognitive Processing,17(3), 225–241.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Weis, T., Nuerk, H.-C., & Lachmann, T. (2018). Attention allows the SNARC effect to operate on multiple number lines. Scientific Reports,8(1), 13778.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Wood, G., Nuerk, H.-C., & Willmes, K. (2006). Neural representations of two-digit numbers: A parametric fMRI study. NeuroImage,29(2), 358–367.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Wood, G., Willmes, K., Nuerk, H.-C., & Fischer, M. H. (2008). On the cognitive link between space and number: A meta-analysis of the SNARC effect. Psychology Science Quarterly,50(4), 489–525.Google Scholar
  64. Zhang, J., & Norman, D. A. (1995). A representational analysis of numeration systems. Cognition,57(3), 271–295.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of TuebingenTuebingenGermany
  2. 2.LEAD Graduate School & Research NetworkUniversity of TuebingenTuebingenGermany
  3. 3.Department of PsychologyUniversity of YorkYorkUK
  4. 4.Department of Special Needs EducationUniversity of OsloOsloNorway
  5. 5.Leibnitz-Institut für WissenmedienTuebingenGermany

Personalised recommendations