Advertisement

Small numerosity advantage for sequential enumeration on RSVP stimuli: an object individuation-based account

  • Xiaorong Cheng
  • Chunyan Lin
  • Chunmiao Lou
  • Weiwei Zhang
  • Yaqian Han
  • Xianfeng DingEmail author
  • Zhao FanEmail author
Original Article
  • 60 Downloads

Abstract

Although there is a large literature demonstrating rapid and accurate enumeration of small sets of simultaneously presented items (i.e., subitizing), it is unclear whether this small numerosity advantage (SNA) can also manifest in sequential enumeration. The present study thus has two aims: to establish a robust processing advantage for small numerosities during sequential enumeration using a rapid serial visual presentation (RSVP) paradigm, and to examine the underlying mechanism for a SNA in sequential enumeration. The results indicate that a small set of items presented in fast sequences can be enumerated accurately with a high precision and a SOA (stimulus onset asynchrony)-sensitive capacity limit, essentially generalizing the large literature on small numerosity advantage from spatial domain to temporal domain. A resource competition hypothesis was proposed and confirmed in further experiments. Specifically, sequential enumeration and other cognitive process, such as visual working memory (VWM), compete for a shared resource of object individuation by which items are segregated as individual entities. These results implied that the limited resource of object individuation can be allocated within time windows of flexible temporal scales during simultaneous and sequential enumerations. Taken together, the present study calls for attention to the dynamic aspect of the enumeration process and highlights the pivotal role of object individuation in underlying a wide range of mental operations, such as enumeration and VWM.

Notes

Author contributions

All authors designed the study. XC and CL programmed the task and performed data analyses (along with CL). All authors contributed to manuscript preparation.

Funding

This work was made possible by grants from the National Natural Science Foundation of China (31500869 and 31671122), China Scholarship Council (201806775014 and 201806775017) and the Fundamental Research Funds for the Central Universities, China (CCNU18TS037, CCNU19TS039, CCNU17TS025, CCNU19TS075 and CCNU19TD019).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee, the American Psychological Association (APA) standards and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all the individual participants included in the study.

Supplementary material

426_2019_1264_MOESM1_ESM.rar (48 kb)
Supplementary material 1 (RAR 48 kb)

References

  1. Anobile, G., Arrighi, R., & Burr, D. C. (2019). Simultaneous and sequential subitizing are separate systems, and neither predicts math abilities. Journal of Experimental Child Psychology, 178, 86–103.PubMedCrossRefGoogle Scholar
  2. Anobile, G., Arrighi, R., Castaldi, E., Grassi, E., Pedonese, L., Moscoso, P. A. M., & Burr, D. C. (2018). Spatial but not temporal numerosity thresholds correlate with formal math skills in children. Developmental Psychology, 54, 458–475.PubMedCrossRefGoogle Scholar
  3. Anobile, G., Castaldi, E., Turi, M., Tinelli, F., & Burr, D. C. (2016a). Numerosity but not texture density correlates with math ability in children. Developmental Psychology, 52, 1206–1216.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Anobile, G., Cicchini, G. M., & Burr, D. C. (2016b). Number as a primary perceptual attribute: A review. Perception, 45(1), 25–31.  https://doi.org/10.1177/0301006615602599.CrossRefGoogle Scholar
  5. Anobile, G., Turi, M., Cicchini, G. M., & Burr, D. C. (2012). The effects of cross-sensory attentional demand on subitizing and on mapping number onto space. Vision Research, 74, 102–109.PubMedCrossRefGoogle Scholar
  6. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436.PubMedCrossRefGoogle Scholar
  7. Brown, J. L. (1965). Flicker and intermittent stimulation. In C. H. Graham (Ed.), Vision and visual perception. New York: Wiley.Google Scholar
  8. Burr, D. C., Anobile, G., & Turi, M. (2011). Adaptation affects both high and low (subitized) numbers under conditions of high attentional load. Seeing and Perceiving, 24, 141–150.PubMedCrossRefGoogle Scholar
  9. Burr, D. C., Turi, M., & Anobile, G. (2010). Subitizing but not estimation of numerosity requires attentional resources. Journal of Vision, 10(6), 20.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Camos, V., & Tillmann, B. (2008). Discontinuity in the enumeration of sequentially presented auditory and visual stimuli. Cognition, 107(3), 1135–1143.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Cheng, X., Yang, Q., Han, Y., Ding, X., & Fan, Z. (2014). Capacity Limit of Simultaneous Temporal Processing: How Many Concurrent 'Clocks' in Vision? PLoS ONE, 9(3), e91797.  https://doi.org/10.1371/journal.pone.0091797.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chesney, D. L., & Haladjian, H. H. (2011). Evidence for a shared mechanism used in multiple-object tracking and subitizing. Attention, Perception, & Psychophysics, 73(8), 2457.CrossRefGoogle Scholar
  13. Cohen, J. (1988). Statistical power analysis for the behavioral sciences. New York: Academic Press.Google Scholar
  14. Coltheart, M. (1980). The persistences of vision. Philosophical Transactions of the Royal Society B, 290(1038), 57–69.CrossRefGoogle Scholar
  15. Cordes, S., Gelman, R., Gallistel, C. R., & Whalen, J. (2001). Variability signatures distinguish verbal from nonverbal counting for both large and small numbers. Psychonomic Bulletin & Review, 8(4), 698–707.CrossRefGoogle Scholar
  16. Coull, J. T., & Nobre, A. C. (1998). Where and when to pay attention: The neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. The Journal of Neuroscience, 18(18), 7426–7435.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Davis, H., & Pérusse, R. (1988). Numerical competence in animals: Definitional issues, current evidence, and a new research agenda. Behavioral & Brain Sciences, 11, 561–615.CrossRefGoogle Scholar
  18. Dehaene, S. (1997). The number sense. New York: Oxford University Press.Google Scholar
  19. Dehaene, S., & Changeux, J. P. (1993). Development of elementary numerical abilities: A neuronal model. Journal of Cognitive Neuroscience, 5, 390–407.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Drew, T., & Vogel, E. K. (2008). Neural measures of individual differences in selecting and tracking multiple moving objects. The Journal of Neuroscience, 28, 4183–4191.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Fan, Z., Muthukumaraswamy, S. D., Singh, K. D., & Shapiro, K. (2012). The role of sustained posterior brain activity in the serial chaining of two cognitive operations: A MEG study. Psychophysiology, 49(8), 1133–1144.PubMedPubMedCentralGoogle Scholar
  22. Fan, Z., Singh, K. D., Muthukumaraswamy, S. D., Sigman, M., Dehaene, S., & Shapiro, K. (2011). The cost of serially chaining two cognitive operations. Psychological Research.  https://doi.org/10.1007/s00426-011-0375-y.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Feigenson, L., Dehaene, S., & Spelke, E. S. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307–314.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Gallistel, C. R., & Gelman, R. (1991). Subitizing: The preverbal counting process. In F. Craik, W. Kessen, & A. Ortony (Eds.), Thoughts memories and emotions: Essays in honor of George Mandler (pp. 65–81). Hillsdale, NJ: Erlbaum.Google Scholar
  26. Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44, 43–74.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Cambridge, MA: Harvard University Press.Google Scholar
  28. Hecht, S., & Smith, E. L. (1936). Intermittent stimulation by light. VI. Area and the relation between critical frequency and intensity. Journal of General Physiology, 19, 978–989.Google Scholar
  29. Hyde, D. C., & Wood, J. N. (2011). Spatial attention determines the nature of nonverbal number representation. Journal of Cognitive Neuroscience, 23(9), 2336–2351.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Izard, V., & Dehaene, S. (2008). Calibrating the mental number line. Cognition, 106, 1221–1247.PubMedCrossRefGoogle Scholar
  31. Jazayeri, M., & Shadlen, M. N. (2010). Temporal context calibrates interval timing. Nature Neuroscience, 13(8), 1020–1026.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Jerome, E. A., & Keller, F. S. (1945). A test of two ‘‘remedial’’ devices in high-speed code reception. OSRD report, 5365.Google Scholar
  33. Jevons, W. S. (1871). The power of numerical discrimination. Nature, 3, 281–282.CrossRefGoogle Scholar
  34. Katzin, N., Cohen, Z. Z., & Henik, A. (2019). If it looks, sounds, or feels like subitizing, is it subitizing? A modulated definition of subitizing. Psychonomic Bulletin & Review, 26(3), 790–797.CrossRefGoogle Scholar
  35. Kaufman, E. L., Lord, M. W., Reese, T. W., & Volkmann, J. (1949). The discrimination of visual number. The American Journal of Psychology, 62, 498–525.PubMedCrossRefGoogle Scholar
  36. Kline, R. B. (2004). Beyond significance testing. Washington, DC: American Psychological Association.Google Scholar
  37. Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance, 21, 451–468.PubMedGoogle Scholar
  38. Lavie, N. (2005). Distracted and confused? Selective attention under load. Trends in Cognitive Science, 9(2), 75–82.CrossRefGoogle Scholar
  39. Law, M. B., Pratt, J., & Abrams, R. A. (1995). Color-based inhibition of return. Attention, Perception, & Psychophysics, 57(3), 402–408.CrossRefGoogle Scholar
  40. Logie, R. H., & Baddeley, A. D. (1987). Cognitive processes in counting. Journal of Experimental Psychology. Learning, Memory, and Cognition, 13, 310–326.CrossRefGoogle Scholar
  41. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281.PubMedCrossRefGoogle Scholar
  42. Mandler, G., & Shebo, B. J. (1982). Subitizing: An analysis of its component processes. Journal of Experimental Psychology: General, 111, 1–22.CrossRefGoogle Scholar
  43. Matsuzawa, T. (1985). Use of numbers by a chimpanzee. Nature, 315(6014), 57–59.PubMedCrossRefGoogle Scholar
  44. Mazza, V. (2017). Simultanagnosia and object individuation. Cognitive Neuropsychology, 34(7–8), 430–439.PubMedCrossRefGoogle Scholar
  45. McLachlan, N. M., Marco, D. J. T., & Wilson, S. J. (2012). Pitch enumeration: Failure to subitize in audition. PLoS ONE, 7(4), e33661.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Meck, W. H., & Church, R. M. (1983). A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behavior Processes, 9, 320–334.PubMedGoogle Scholar
  47. Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215, 1519–1520.  https://doi.org/10.1038/2151519a0.CrossRefPubMedGoogle Scholar
  48. Nieder, A. (2016). The neuronal code for number. Nature Reviews Neuroscience, 16(6), 366–382.CrossRefGoogle Scholar
  49. Nieder, A., Diester, I., & Tudusciuc, O. (2006). Temporal and spatial enumeration processes in the primate parietal cortex. Science, 313(8), 1431–1435.PubMedCrossRefGoogle Scholar
  50. Olivers, C. N., & Watson, D. G. (2008). Subitizing requires attention. Visual Cognition, 16(4), 439–462.CrossRefGoogle Scholar
  51. Pagano, S., Lombard, L., & Mazza, V. (2014). Brain dynamics of attention and working memory engagement in subitizing. Brain Research, 1543, 244–252.  https://doi.org/10.1016/j.brainres.2013.11.025.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437–442.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Piazza, M., Fumarola, A., Chinello, A., & Melcher, D. (2011). Subitizing reflects visuo-spatial object individuation capacity. Cognition, 121(1), 147–153.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Piazza, M., Giacomini, E., Bihan, D. L., & Dehaene, S. (2003). Single-trial classification of parallel pre-attentive and serial attentive processes using functional magnetic resonance imaging. Proceedings Biological Sciences, 270(1521), 1237.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306(5695), 499–503.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Pincham, H. L., & Szűcs, D. (2012). Intentional subitizing: Exploring the role of automaticity in enumeration. Cognition, 124(2), 107–116.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In H. Bouma & D. G. Bouwhuis (Eds.), Attention and performance X: Control of language processes (pp. 531–556). NJ: Erlbaum.Google Scholar
  58. Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision, 3, 179–197.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Repp, B. H. (2007). Perceiving the numerosity of rapidly occurring auditory events in metrical and nonmetrical contexts. Perception & Psychophysics, 69(4), 529–543.CrossRefGoogle Scholar
  60. Revkin, S. K., Piazza, M., Izard, V., Cohen, L., & Dehaene, S. (2008). Does subitizing reflect numerical estimation? Psychological Science, 19(6), 607–614.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Rohenkohl, G., Gould, I. C., Pessoa, J., & Nobre, A. C. (2014). Combining spatial and temporal expectations to improve visual perception. Journal of Vision, 14(4), 8.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Sagi, D., & Julesz, B. (1985). Detection versus discrimination of visual orientation. Perception, 14, 619–628.Google Scholar
  63. Samuel, A. G., & Kat, D. (2003). Inhibition of return: A graphical meta-analysis of its time course and an empirical test of its temporal and spatial properties. Psychonomic Bulletin & Review, 10(4), 897–906.CrossRefGoogle Scholar
  64. Shulman, G. L., Astafiev, S. V., McAvoy, M. P., dʼAvossa, G., & Corbetta, M. (2007). Right TPJ deactivation during visual search: Functional significance and support for a filter hypothesis. Cerebral Cortex, 17, 2625–2633.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Spelke, E. S. (2000). Core knowledge. American Psychologist, 55, 1233–1243.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Starkey, P., & Cooper, R. G. (1980). Perception of numbers by human infants. Science, 210, 1033–1035.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Taubman, R. E. (1950). Studies in judged number: II. The judgment of visual number. The Journal of General Psychology, 43(2), 195–219.CrossRefGoogle Scholar
  68. Thurstone, L. L. (1943). Report on a code aptitude test (privately printed).Google Scholar
  69. Tobias, D. (1967). Number: The language of science (4th ed.). New York: The Free Press.Google Scholar
  70. Todd, J., Fougnie, D., & Marois, R. (2005). Visual short-term memory load suppresses temporo-parietal junction activity and induces inattentional blindness. Psychological Science, 16, 965–972.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Todd, J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428(6984), 751–754.PubMedCrossRefGoogle Scholar
  72. Trick, L. M., & Pylyshyn, Z. W. (1993). What enumeration studies can show us about spatial attention: Evidence for limited capacity preattentive processing. Journal of Experimental Psychology: Human Perception and Performance, 19, 331–351.PubMedGoogle Scholar
  73. Trick, L. M., & Pylyshyn, Z. W. (1994). Why are small and large numbers enumerated differently? A limited-capacity preattentive stage in vision. Psychological Review, 101(1), 80–102.PubMedCrossRefGoogle Scholar
  74. Vetter, P., Butterworth, B., & Bahrami, B. (2008). Modulating attentional load affects numerosity estimation: Evidence against a pre-attentive subitizing mechanism. PLoS One, 3(9), e3269.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Vetter, P., Butterworth, B., & Bahrami, B. (2011). A candidate for the attentional bottleneck: Set-size specific modulation of the right TPJ during attentive enumeration. Journal of Cognitive Neuroscience, 23(3), 728–736.PubMedCrossRefGoogle Scholar
  76. Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428, 748–751.  https://doi.org/10.1038/nature02447.CrossRefPubMedGoogle Scholar
  77. Watson, D. G., & Maylor, E. A. (2006). Effects of color heterogeneity on subitization. Perception & Psychophysics, 68, 319–326.CrossRefGoogle Scholar
  78. Whalen, J., Gallistel, C. R., & Gelman, R. (1999). Nonverbal counting in humans: The psychophysics of number representation. Psychological Science, 10, 130–137.CrossRefGoogle Scholar
  79. Wutz, A., & Melcher, D. (2013). Temporal buffering and visual capacity: The time course of object formation underlies capacity limits in visual cognition. Attention, Perception, & Psychophysics, 75, 921–933.CrossRefGoogle Scholar
  80. Wutz, A., & Melcher, D. (2014). The temporal window of individuation limits visual capacity. Frontiers in Psychology, 5, 952.  https://doi.org/10.3389/fpsyg.2014.00952.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Xu, Y., & Chun, M. M. (2009). Selecting and perceiving multiple visual objects. Trends in Cognitive Science, 13, 167–174.  https://doi.org/10.1016/j.tics.2009.01.008.CrossRefGoogle Scholar
  82. Xu, X., & Liu, C. (2008). Can subitizing survive the attentional blink? An ERP study. Neuroscience Letters, 440(2), 140–144.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Central China Normal University, School of PsychologyWuhanChina
  2. 2.Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of EducationWuhanChina
  3. 3.Key Laboratory of Human Development and Mental Health of Hubei ProvinceWuhanChina
  4. 4.Department of PsychologyUniversity of California at RiversideRiversideUSA

Personalised recommendations