Attentional avoidance of threatening stimuli

  • Mark K. Britton
  • Brian A. AndersonEmail author
Original Article


Aversive conditioning has been shown to influence the control of attention, such that aversively conditioned stimuli receive elevated priority. Although aversively conditioned but task-irrelevant distractors are known to capture attention during speeded search in rapid orienting tasks, it is unclear whether this bias extends to situations where orienting can be more deliberate. We demonstrate that punishment, via electric shock, does not give rise to oculomotor capture by shock-associated stimuli during a foraging task; rather, such aversively conditioned stimuli are actively avoided when searching through a display. On the other hand, even during a foraging task, we found some evidence for a covert attentional bias to threat. Our findings indicate that the previously described effects of aversive conditioning on visual search may not generalize beyond the initial glance and can be suppressed when conditions allow for more deliberate search strategies. More generally, our findings reveal that sustained attentional avoidance of aversively conditioned stimuli is possible during active search.



This study was supported by Grants from the Brain & Behavior Research Foundation (NARSAD 26008) and NIH (R01-DA046410) to BAA.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All procedures were conducted in accordance with the ethical standards of the Texas A&M University Institutional Review Board and with the 1964 Helsinki declaration and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. Anderson, B. A. (2016). Value-driven attentional capture in the auditory domain. Attention, Perception, & Psychophysics, 78(1), 242–250.CrossRefGoogle Scholar
  2. Anderson, B. A. (2018). Controlled information processing, automaticity, and the burden of proof. Psychonomic Bulletin & Review, 25(5), 1814–1823.CrossRefGoogle Scholar
  3. Anderson, B. A., & Britton, M. K. (2019). On the automaticity of attentional orienting to threatening stimuli. Emotion. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Anderson, B. A., & Halpern, M. (2017). On the value-dependence of value-driven attentional capture. Attention, Perception, & Psychophysics, 79(4), 1001–1011.CrossRefGoogle Scholar
  5. Anderson, B. A., & Kim, H. (2019). On the relationship between value-driven and stimulus-driven attentional capture. Attention, Perception, and Psychophysics, 81(3), 607–613.CrossRefGoogle Scholar
  6. Anderson, B. A., & Yantis, S. (2012). Value-driven attentional and oculomotor capture during goal-directed, unconstrained viewing. Attention, Perception, & Psychophysics, 74(8), 1644–1653.CrossRefGoogle Scholar
  7. Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top–down versus bottom–up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437–443.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bannerman, R. L., Milders, M., & Sahraie, A. (2010). Attentional bias to brief threat-related faces revealed by saccadic eye movements. Emotion, 10(5), 733–738.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Cain, M. S., & Mitroff, S. R. (2013). Memory for found targets interferes with subsequent performance in multiple-target visual search. Journal of Experimental Psychology: Human Perception and Performance, 39(5), 1398–1408.PubMedPubMedCentralGoogle Scholar
  11. Chukoskie, L., Snider, J., Mozer, M. C., Krauzlis, R. J., & Sejnowski, T. J. (2013). Learning where to look for a hidden target. Proceedings of the National Academy of Sciences, 110, 10438–10445.CrossRefGoogle Scholar
  12. Cisler, J. M., & Koster, E. H. W. (2010). Mechanisms of attentional biases towards threat in the anxiety disorders: An integrative review. Clinical Psychology Review, 30(2), 203–216.CrossRefGoogle Scholar
  13. Cunningham, C. A., & Egeth, H. E. (2016). Taming the white bear: Initial costs and eventual benefits of distractor inhibition. Psychological Science, 27(4), 476–485.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Donk, M., & Theeuwes, J. (2001). Visual marking beside the mark: Prioritizing selection by abrupt onsets. Perception & Psychophysics, 63(5), 891–900.CrossRefGoogle Scholar
  15. Donk, M., & van Zoest, W. (2008). Effects of salience are short-lived. Psychological Science, 19(7), 733–739.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Failing, M., Nissens, T., Pearson, D., Le Pelley, M., & Theeuwes, J. (2015). Oculomotor capture by stimuli that signal the availability of reward. Journal of Neurophysiology, 114(4), 2316–2327.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Hermans, D., Vansteenwegen, D., & Eelen, P. (1999). Eye movement registration as a continuous index of attention deployment: Data from a group of spider anxious students. Cognition and Emotion, 13(4), 419–434.CrossRefGoogle Scholar
  18. Hickey, C., & van Zoest, W. (2012). Reward creates oculomotor salience. Current Biology, 22(7), R219–R220.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Hopkins, L. S., Helmstetter, F. J., & Hannula, D. E. (2016). Eye movements are captured by a perceptually simple conditioned stimulus in the absence of explicit contingency knowledge. Emotion, 16(8), 1157–1171.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Koster, E. H., Crombez, G., Van Damme, S., Verschuere, B., & De Houwer, J. (2004). Does imminent threat capture and hold attention? Emotion, 4(3), 312–317.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Koster, E. H. W., Crombez, G., Verschuere, B., Van Damme, S., & Wiersema, J. R. (2006). Components of attentional bias to threat in high trait anxiety: Facilitated engagement, impaired disengagement, and attentional avoidance. Behaviour Research and Therapy, 44(12), 1757–1771.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Le Pelley, M. E., Watson, P., Pearson, D., Abeywickrama, R. S., & Most, S. B. (2018). Winners and losers: Reward and punishment produce biases in temporal selection. Journal of Experimental Psychology. Learning, Memory, and Cognition, 45(5), 822–833.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Mogg, K., Bradley, B., Miles, F., & Dixon, R. (2004). Brief report time course of attentional bias for threat scenes: Testing the vigilance-avoidance hypothesis. Cognition and Emotion, 18(5), 689–700.CrossRefGoogle Scholar
  24. Moher, J., & Egeth, H. E. (2012). The ignoring paradox: Cueing distractor features leads first to selection, then to inhibition of to-be-ignored items. Attention, Perception, and Psychophysics, 74(8), 1590–1605.CrossRefGoogle Scholar
  25. Mulckhuyse, M. (2018). The influence of emotional stimuli on the oculomotor system: A review of the literature. Cognitive, Affective, & Behavioral Neuroscience, 18(3), 411–425.CrossRefGoogle Scholar
  26. Mulckhuyse, M., Crombez, G., & Van der Stigchel, S. (2013). Conditioned fear modulates visual selection. Emotion, 13(3), 529–536.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Mulckhuyse, M., & Dalmaijer, E. S. (2016). Distracted by danger: Temporal and spatial dynamics of visual selection in the presence of threat. Cognitive, Affective, & Behavioral Neuroscience, 16(2), 315–324.CrossRefGoogle Scholar
  28. Mulckhuyse, M., Van der Stigchel, S., & Theeuwes, J. (2009). Early and late modulation of saccade deviations by target distractor similarity. Journal of Neurophysiology, 102(3), 1451–1458.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Mulckhuyse, M., van Zoest, W., & Theeuwes, J. (2008). Capture of the eyes by relevant and irrelevant onsets. Experimental Brain Research, 186(2), 225–235.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Nissens, T., Failing, M., & Theeuwes, J. (2017). People look at the object they fear: Oculomotor capture by stimuli that signal threat. Cognition and Emotion, 31(8), 1707–1714.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Öhman, A., & Mineka, S. (2001). Fears, phobias, and preparedness: Toward an evolved module of fear and fear learning. Psychological Review, 108(3), 483–522.PubMedCrossRefGoogle Scholar
  32. Pearson, D., Osborn, R., Whitford, T. J., Failing, M., Theeuwes, J., & Le Pelley, M. E. (2016). Value-modulated oculomotor capture by task-irrelevant stimuli is a consequence of early competition on the saccade map. Attention, Perception, & Psychophysics, 78(7), 2226–2240.CrossRefGoogle Scholar
  33. Rinck, M., & Becker, E. S. (2006). Spider fearful individuals attend to threat, then quickly avoid it: Evidence from eye movements. Journal of Abnormal Psychology, 115(2), 231–238.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2), 225–237.CrossRefGoogle Scholar
  35. Sagliano, L., Trojano, L., Amoriello, K., Migliozzi, M., & D’Olimpio, F. (2014). Attentional biases toward threat: The concomitant presence of difficulty of disengagement and attentional avoidance in low trait anxious individuals. Frontiers in Psychology, 5, 685.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Sali, A. W., Anderson, B. A., Yantis, S., Mostofsky, S. H., & Rosch, K. S. (2018). Reduced value-driven attentional capture among children with ADHD compared to typically developing controls. Journal of Abnormal Child Psychology, 46(6), 1187–1200.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception, & Psychophysics, 72(6), 1455–1470.CrossRefGoogle Scholar
  38. Schmidt, L. J., Belopolsky, A. V., & Theeuwes, J. (2012). The presence of threat affects saccade trajectories. Visual Cognition, 20(3), 284–299.CrossRefGoogle Scholar
  39. Schmidt, L. J., Belopolsky, A. V., & Theeuwes, J. (2015). Attentional capture by signals of threat. Cognition and Emotion, 29(4), 687–694.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Schmidt, L. J., Belopolsky, A. V., & Theeuwes, J. (2017). The time course of attentional bias to cues of threat and safety. Cognition and Emotion, 31(5), 845–857.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Smith, S. D., Most, S. B., Newsome, L. A., & Zald, D. H. (2006). An emotion-induced attentional blink elicited by aversively conditioned stimuli. Emotion, 6(3), 523–527.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Theeuwes, J., de Vries, G. J., & Godijn, R. (2003). Attentional and oculomotor capture with static singletons. Perception & Psychophysics, 65(5), 735–746.CrossRefGoogle Scholar
  43. Thigpen, N. N., Bartsch, F., & Keil, A. (2017). The malleability of emotional perception: Short-term plasticity in retinotopic neurons accompanies the formation of perceptual bias to threat. Journal of Experimental Psychology: General, 146(4), 464–471.CrossRefGoogle Scholar
  44. Van der Stigchel, S., & Theeuwes, J. (2007). The relationship between covert and overt attention in endogenous cuing. Perception & Psychophysics, 69(5), 719–731.CrossRefGoogle Scholar
  45. van Zoest, W., Donk, M., & Theeuwes, J. (2004). The role of stimulus-driven and goal-driven control in saccadic visual selection. Journal of Experimental Psychology: Human Perception and Performance, 30(4), 746–759.PubMedPubMedCentralGoogle Scholar
  46. Vuilleumier, P. (2005). How brains beware: Neural mechanisms of emotional attention. Trends in Cognitive Sciences, 9(12), 585–594.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Wang, L., Yu, H., & Zhou, X. (2013). Interaction between value and perceptual salience in value-driven attentional capture. Journal of Vision, 13(3), 1–13.CrossRefGoogle Scholar
  48. Weaver, M. D., van Zoest, W., & Hickey, C. (2017). A temporal dependency account of attentional inhibition in oculomotor control. NeuroImage, 147, 880–894.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Weierich, M. R., Treat, T. A., & Hollingworth, A. (2008). Theories and measurement of visual attentional processing in anxiety. Cognition and Emotion, 22(6), 985–1018.CrossRefGoogle Scholar
  50. Wentura, D., Muller, P., & Rothermund, K. (2014). Attentional capture by evaluative stimuli: Gain- and loss-connoting colors boost the additional singleton effect. Psychonomic Bulletin & Review, 21(3), 701–707.CrossRefGoogle Scholar
  51. Wolfe, J. M., Butcher, S. J., Lee, C., & Hyle, M. (2003). Changing your mind: On the contributions of top-down and bottom-up guidance in visual search for feature singletons. Journal of Experimental Psychology: Human Perception and Performance, 29(2), 483–502.PubMedPubMedCentralGoogle Scholar
  52. Wolfe, J. M., Cain, M. S., & Aizenman, A. M. (2019). Guidance and selection history in hybrid foraging visual search. Attention, Perception, & Psychophysics, 81(3), 637–653.CrossRefGoogle Scholar
  53. Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: Evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10(5), 601–621.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Texas A&M UniversityCollege StationUSA

Personalised recommendations