Advertisement

Change deafness can be reduced, but not eliminated, using brief training interventions

  • Vanessa C. IrsikEmail author
  • Joel S. Snyder
Original Article
  • 45 Downloads

Abstract

Research on change deafness indicates there are substantial limitations to listeners’ perception of which objects are present in complex auditory scenes, an ability that is important for many everyday situations. Experiment 1 examined the extent to which change deafness could be reduced by training with performance feedback compared to no training. Experiment 2 compared the efficacy of training with detailed feedback that identified the change and provided performance feedback on each trial, training without feedback, and no training. We further examined the timescale over which improvement unfolded by examining performance using an immediate post-test and a second post-test 12 h later. We were able to reduce, but not eliminate, change deafness for all groups, and determined that the practice content strongly impacted bias and response strategy. Training with simple performance feedback reduced change deafness but increased bias and false alarm rates, while providing a more detailed feedback improved change detection without affecting bias. Together, these findings suggest that change deafness can be reduced if a relatively small amount of practice is completed. When bias did not impede performance during the first post-test, the majority of the learning following training occurred immediately, suggesting that fast within-session learning primarily supported improvement on the task.

Notes

Funding

This research was supported by U.S. Army Research Office (Grant W911NF-12-1-0256).

Supplementary material

426_2019_1239_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (DOCX 1025 kb)

References

  1. Aberg, K. C., & Herzog, M. H. (2012). Different types of feedback change decision criterion and sensitivity differently in perceptual learning. Journal of Vision, 12(3), 1–11.CrossRefGoogle Scholar
  2. Ahissar, M., & Hochstein, S. (2004). The reverse hierarchy theory of visual perceptual learning. Trends in Cognitive Science, 8, 457–464.CrossRefGoogle Scholar
  3. Alain, C. (2007). Breaking the wave: effects of attention and learning on concurrent sound perception. Hearing Research, 229(1–2), 225–236.CrossRefPubMedGoogle Scholar
  4. Alain, C., Snyder, J. S., He, Y., & Reinke, K. S. (2007). Changes in auditory cortex parallel rapid perceptual learning. Cerebral Cortex, 17(5), 1074–1084.CrossRefPubMedGoogle Scholar
  5. Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106–111.CrossRefPubMedGoogle Scholar
  6. Amitay, S., Moore, D. R., Molloy, K., & Halliday, L. F. (2015). Feedback valence affects auditory perceptual learning independently of feedback probability. PLoS One, 10(5), e0126412.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Atienza, M., Cantero, J. L., & Dominguez-Marin, E. (2002). The time course of neural changes underlying auditory perceptual learning. Learning & Memory, 9(3), 138–150.CrossRefGoogle Scholar
  8. Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items, regardless of complexity. Psychological Science, 18, 622–628.CrossRefPubMedGoogle Scholar
  9. Backer, K. C., & Alain, C. (2012). Orienting attention to sound object representations attenuates change deafness. Journal of Experimental Psychology: Human Perception and Performance, 38(6), 1554–1566.PubMedGoogle Scholar
  10. Baldwin, T. T., & Ford, J. K. (1988). Transfer of learning: a review and directions for future research. Personnel Psychology, 41, 63–105.CrossRefGoogle Scholar
  11. Banai, K., & Lavner, Y. (2014). The effect of training length on the perceptual learning of time compressed speech and its generalization. Journal of the Acoustical Society of America, 136(4), 1908–1917.CrossRefPubMedGoogle Scholar
  12. Beck, M. R., & Levin, D. T. (2003). The role of representational volatility in recognizing pre- and postchange objects. Perception & Psychophysics, 65(3), 458–468.CrossRefGoogle Scholar
  13. Beck, M. R., Martin, B. A., Smitherman, E., & Gaschen, L. (2013). Eyes-on training and radiological expertise: an examination of expertise development and its effects on visual working memory. Human Factors, 55(4), 747–763.CrossRefPubMedGoogle Scholar
  14. Becker, M. W., Pashler, H., & Anstis, S. M. (2000). The role of iconic memory in change-detection tasks. Perception, 29, 273–286.PubMedGoogle Scholar
  15. Beste, C., & Dinse, H. R. (2013). Learning without training. Current Biology, 23(11), R489–R499.CrossRefPubMedGoogle Scholar
  16. Brady, T. F., Konkle, T., & Alvarez, G. A. (2011). A review of visual memory capacity: beyond individual items and towards structured representations. Journal of Vision, 11(5), 1–34.CrossRefGoogle Scholar
  17. Bregman, A. S. (1990). Auditory scene analysis: the perceptual organization of sound. Cambridge: The MIT Press.CrossRefGoogle Scholar
  18. Burgers, C., Eden, A., van Engelenburg, M. D., & Buningh, S. (2015). How feedback boosts motivation and play in a brain-training game. Computers in Human Behavior, 48, 94–103.CrossRefGoogle Scholar
  19. Clapp, W. C., Hamm, J. P., Kirk, I. J., & Teyler, T. J. (2012). Translating long-term potentiation from animals to humans: a novel method for noninvasive assessment of cortical plasticity. Biological Psychiatry, 71(6), 496–502.CrossRefPubMedGoogle Scholar
  20. Constantino, F. C., Pinggera, L., Paranamana, S., Kashino, M., & Chait, M. (2012). Detection of appearing and disappearing objects in complex acoustic scenes. PLoS One, 7(9), e46167.CrossRefGoogle Scholar
  21. Cowan, N., Saults, J. S., & Nugent, L. D. (1997). The role of absolute and relative amounts of time in forgetting within immediate memory: the case of tone-pitch comparisons. Psychonomic Bulletin & Review, 4, 393–397.CrossRefGoogle Scholar
  22. Delhommeau, K., Micheyl, C., & Jouvent, R. (2005). Generalization of frequency discrimination learning across frequencies and ears: implications for underlying neural mechanisms in humans. Journal of the Association for Research in Otolaryngology, 6, 171–179.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Demany, L., & Semal, C. (2002). Learning to perceive pitch differences. Journal of the Acoustical Society of America, 111(3), 1377–1388.CrossRefPubMedGoogle Scholar
  24. Demany, L., Trost, W., Serman, M., & Semal, C. (2008). Auditory change detection: simple sounds are not memorized better than complex sounds. Psychological Science, 19(1), 85–91.CrossRefPubMedGoogle Scholar
  25. Dickerson, K., & Gaston, J. R. (2014). Did you hear that? The role of stimulus similarity and uncertainty in auditory change deafness. Frontiers in Psychology, 5, 1–5.CrossRefGoogle Scholar
  26. Donovan, J. J., & Radosevich, D. I. (1999). A meta-analytic review of the distribution of practice effect: now you see it, now you don’t. Journal of Applied Psychology, 84, 795–805.CrossRefGoogle Scholar
  27. Dosher, B. A., & Lu, Z. (2007). The functional form of performance improvements in perceptual learning: learning rates and transfer. Psychological Science, 18(6), 531–539.CrossRefPubMedGoogle Scholar
  28. Eng, H. Y., Chen, D., & Jiang, Y. V. (2005). Visual working memory for simple and complex visual stimuli. Psychonomic Bulletin & Review, 12(6), 1127–1133.CrossRefGoogle Scholar
  29. Eramudugolla, R., Irvine, D. R. F., McAnally, K. I., Martin, R. L., & Mattingley, J. B. (2005). Directed attention eliminates “change deafness” in complex auditory scenes. Current Biology, 15(12), 1108–1113.CrossRefPubMedGoogle Scholar
  30. Fahle, M., Edelman, S., & Poggio, T. (1995). Fast perceptual learning in hyperacuity. Vision Research, 25(21), 3003–3013.CrossRefGoogle Scholar
  31. Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.CrossRefGoogle Scholar
  32. Garcia, A., Kuai, S., & Kourtzi, Z. (2013). Differences in the time course of learning for hard compared to easy training. Frontiers in Psychology, 4, 1–8.Google Scholar
  33. Gaspar, J. G., Neider, M. B., Simons, D. J., McCarley, J. S., & Kramer, A. F. (2013). Change detection: training and transfer. PLoS One, 8(6), 1–7. (e67781).CrossRefGoogle Scholar
  34. Gaston, J., Dickerson, K., Hipp, D., & Gerhardstein, P. (2017). Change deafness for real spatialized environmental scenes. Cognitive Research: Principles and Implications, 2(29), 1–15.Google Scholar
  35. Gilbert, C. D. (1994). Early perceptual learning. Proceedings of the National Academy of Sciences, 91, 1195–1197.CrossRefGoogle Scholar
  36. Gilbert, C. D., & Wiesel, T. N. (1992). Receptive field duration dynamics in adult primary visual cortex. Nature, 356, 150–152.CrossRefPubMedGoogle Scholar
  37. Gottselig, J. M., Hofer-Tinguely, G., Borbely, A. A., Regel, S. J., Landolt, H. P., Retey, J. V., & Achermann, P. (2004). Sleep and rest facilitate auditory learning. Neuroscience, 127(3), 557–561.CrossRefPubMedGoogle Scholar
  38. Greene, M. R., & Oliva, A. (2009). Recognition of natural scenes from global properties: Seeing the forest without representing the trees. Cognitive Psychology, 58, 137–176.CrossRefPubMedGoogle Scholar
  39. Greenspan, S. L., Nusbaum, H. C., & Pisoni, D. B. (1988). Perceptual-learning of synthetic speech produced by rule. Journal of Experimental Psychology. Learning, Memory, and Cognition, 14(3), 421–433.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Gregg, M. K., Irsik, V. C., & Snyder, J. S. (2014). Change deafness and object encoding with recognizable and unrecognizable sounds. Neuropsychologia, 61, 19–30.CrossRefPubMedGoogle Scholar
  41. Gregg, M. K., Irsik, V. C., & Snyder, J. S. (2017). Effects of capacity limits, memory loss, and sound type in change deafness. Attention, Perception, & Psychophysics, 79, 2564–2575.CrossRefGoogle Scholar
  42. Gregg, M. K., & Samuel, A. G. (2008). Change deafness and the organizational properties of sounds. Journal of Experimental Psychology: Human Perception and Performance, 34(4), 974–991.PubMedGoogle Scholar
  43. Gregg, M. K., & Samuel, A. G. (2009). The importance of semantics in auditory representations. Attention, Perception, & Psychophysics, 71(3), 607–619.CrossRefGoogle Scholar
  44. Gregg, M. K., & Snyder, J. S. (2012). Enhanced sensory processing accompanies successful detection of change for real-world sounds. NeuroImage, 62, 113–119.CrossRefPubMedGoogle Scholar
  45. Hawkey, D. J., Amitay, S., & Moore, D. R. (2004). Early and rapid perceptual learning. Nature Neuroscience, 7(10), 1055–1056.CrossRefPubMedGoogle Scholar
  46. Herzog, M. H., Ewald, K. R. F., Hermens, F., & Fahle, M. (2006). Reverse feedback induces position and orientation specific changes. Vision Research, 46(22), 3761–3770.CrossRefPubMedGoogle Scholar
  47. Herzog, M. H., & Fahle, M. (1997). The role of feedback in learning a vernier discrimination task. Vision Research, 37(15), 2133–2141.CrossRefPubMedGoogle Scholar
  48. Herzog, M. H., & Fahle, M. (1998). Modeling perceptual learning: difficulties and how they can be overcome. Biological Cybernetics, 78, 107–117.CrossRefPubMedGoogle Scholar
  49. Herzog, M. H., & Fahle, M. (1999). Effects of biased feedback on learning and deciding in a vernier discrimination task. Vision Research, 39(25), 4232–4243.CrossRefPubMedGoogle Scholar
  50. Irsik, V. C., Bosch, Vanden, der Nederlanden, C. M., & Snyder, J. S. (2016). Broad attention to multiple individual objects may facilitate change detection with complex auditory scenes. Journal of Experimental Psychology: Human Perception and Performance, 42(11), 1806–1817.PubMedGoogle Scholar
  51. Irvine, D., Martin, R., Klimkeit, E., & Smith, R. (2000). Specificity of perceptual learning in a frequency discrimination task. The Journal of the Acoustical Society of America, 108(6), 2964–2968.CrossRefPubMedGoogle Scholar
  52. Jones, P. R., Moore, D. R., Shub, D. E., & Amitay, S. (2015). The role of response bias in perceptual learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 41(5), 1456–1470.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Kapadia, M. K., Gilbert, C. D., & Westheimer, G. (1994). Measure for short-term cortical plasticity in human vision. Journal of Neuroscience, 14(1), 451–457.CrossRefPubMedGoogle Scholar
  54. Karni, A. (1996). The acquisition of perceptual and motor skills: a memory system in the adult human cortex. Cognitive Brain Research, 5(1–2), 39–48.CrossRefPubMedGoogle Scholar
  55. Karni, A., & Bertini, G. (1997). Learning perceptual skills: behavioral probes into adult cortical plasticity. Current Opinion in Neurobiology, 7, 530–535.CrossRefPubMedGoogle Scholar
  56. Karni, A., & Sagi, D. (1991). Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. Proceedings of the National Academy of Sciences, 88(11), 4966–4970.CrossRefGoogle Scholar
  57. Karni, A., & Sagi, D. (1993). The time course of learning a visual skill. Nature, 365(6443), 250–252.CrossRefPubMedGoogle Scholar
  58. Lee, T. D., & Genovese, E. D. (1988). Distribution of practice in motor skill acquisition: learning and performance effects reconsidered. Research Quarterly, 59, 277–287.Google Scholar
  59. Levin, D. T., Momen, N., Drivdahl, S. B., & Simons, D. J. (2000). Change blindness blindness: the metacognitive error of overestimating change-detection ability. Visual Cognition, 7(1–3), 397–412.CrossRefGoogle Scholar
  60. Levin, D. T., & Simons, D. J. (1997). Failure to detect changes to attended objects in motion pictures. Psychonomic Bulletin & Review, 4, 501–506.CrossRefGoogle Scholar
  61. Little, D. F., Zhang, Y. X., & Wright, B. A. (2017). Disruption of perceptual learning by a brief practice period. Current Biology, 27(33), 3699–3705.CrossRefPubMedGoogle Scholar
  62. Lu, Z., Hua, T., Huang, C., Zhou, Y., & Dosher, B. A. (2011). Visual perceptual learning. Neurobiology Learning Memory, 95(2), 145–151.CrossRefGoogle Scholar
  63. Luck, S. J., & Vogel, E. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–281.CrossRefPubMedGoogle Scholar
  64. Macmillan, N. A., & Creelman, C. D. (2005). Detection theory: a user’s guide (2nd ed.). New Jersey: Lawrence Erlbaum Associates.Google Scholar
  65. Mitroff, S. R., Simons, D. J., & Levin, D. T. (2004). Nothing compares 2 views: change blindness can occur despite preserved access to the changed information. Perception & Psychophysics, 66(8), 1268–1281.CrossRefGoogle Scholar
  66. Molloy, K., Moore, D. R., Sohoglu, E., & Amitay, S. (2012). Less is more: latent learning is maximized by shorter training sessions in auditory perceptual learning. PLoS One, 7(5), e36929.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Nieuwenstein, M. R., & Potter, M. C. (2006). Temporal limits of selection and memory encoding: a comparison of whole versus partial report in rapid serial visual presentation. Psychological Science, 17(6), 471–475.CrossRefPubMedGoogle Scholar
  68. Noë, A., Pessoa, L., & Thompson, E. (2000). Beyond the grand illusion: What change blindness really teaches us about vision. Visual Cognition, 7, 93–106.CrossRefGoogle Scholar
  69. Pavani, F., & Turatto, M. (2008). Change perception in complex auditory scenes. Perception & Psychophysics, 70(4), 619–629.CrossRefGoogle Scholar
  70. Phillips, W. A., & Singer, W. (1974). Function and interaction of on and off transients in vision. I. Psychophysics. Experimental Brain Research, 19(5), 493–506.CrossRefPubMedGoogle Scholar
  71. Poggio, T., Fahle, M., & Edelman, S. (1992). Fast perceptual learning in visual hyperacuity. Science, 256(5059), 1018–1021.CrossRefPubMedGoogle Scholar
  72. Puschmann, S., Sandmann, P., Ahrens, J., Thorne, J., Weerda, R., Klump, G., et al. (2013). Electrophysiological correlates of auditory change detection and change deafness in complex auditory scenes. NeuroImage, 75, 155–164.CrossRefPubMedGoogle Scholar
  73. Recanzone, G. H., Merzenich, M. M., & Jenkins, W. M. (1992a). Frequency discrimination training engaging a restricted skin surface results in an emergence of a cutaneous response zone in cortical area 3a. Journal of Neurophysiology, 67, 1057–1070.CrossRefPubMedGoogle Scholar
  74. Recanzone, G. H., Merzenich, M. M., Jenkins, W. M., Grajski, K. A., & Dinse, H. R. (1992b). Topographic reorganization of the hand representation in cortical area 3b of owl monkeys trained in a frequency-discrimination task. Journal of Neurophysiology, 67, 1031–1056.CrossRefPubMedGoogle Scholar
  75. Recanzone, G. H., Schreiner, C. E., & Merzenich, M. M. (1993). Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. Journal of Neuroscience, 13, 87–103.CrossRefPubMedGoogle Scholar
  76. Rensink, R. A., O’Regan, J. K., & Clark, J. J. (1997). To see or not to see: the need for attention to perceive changes in scenes. Psychological Science, 8(5), 368–373.CrossRefGoogle Scholar
  77. Sagi, D. (2011). Perceptual learning in vision research. Vision Research, 51(13), 1552–1566.CrossRefPubMedGoogle Scholar
  78. Schwab, E. C., Nusbaum, H. C., & Pisoni, D. B. (1985). Some effects of training on the perception of synthetic speech. Human Factors, 27(4), 395–408.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Simons, D. J. (1996). In sight, out of mind: When object representations fail. Psychological Science, 7(5), 301–305.CrossRefGoogle Scholar
  80. Simons, D. J., & Rensink, R. A. (2005). Change blindness: past, present, and future. Trends in Cognitive Sciences, 9(1), 16–20.CrossRefPubMedGoogle Scholar
  81. Snyder, J. S., & Gregg, M. K. (2011). Memory for sound, with an ear toward hearing in complex auditory scenes. Attention, Perception, & Psychophysics, 73, 1993–2007.CrossRefGoogle Scholar
  82. Snyder, J. S., Gregg, M. K., Weintraub, D. M., & Alain, C. (2012). Attention, awareness, and the perception of auditory scenes. Frontiers in Psychology, 3, 1–17.CrossRefGoogle Scholar
  83. Snyder, J. S., & Weintraub, D. M. (2013). Loss and persistence of implicit memory for sound: evidence from auditory stream segregation context effects. Attention Perception Psychophysics, 59, 81–86.Google Scholar
  84. Stelmach, L. B., Bourassa, M., & DiLollo, V. (1984). Detection of stimulus change: the hypothetical roles of visual transient responses. Perception & Psychophysics, 35(3), 245–255.CrossRefGoogle Scholar
  85. Tulving, E., & Thomson, D. M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80, 352–373.CrossRefGoogle Scholar
  86. Vanden Bosch der Nederlanden, C. M., Snyder, J. S., & Hannon, E. E. (2016). Children use object-level category knowledge to detect changes in complex auditory scenes. Developmental Psychology, 52(11), 1867–1877.CrossRefPubMedGoogle Scholar
  87. Vitevitch, M. S. (2003). Change deafness: The inability to detect changes between two voices. Journal of Experimental Psychology: Human Perception and Performance, 29(2), 333–342.PubMedGoogle Scholar
  88. Wenger, M. J., & Rasche, C. (2006). Perceptual learning in contrast detection: Presence and cost of shifts in response criteria. Psychonomic Bulletin & Review, 13(4), 656–661.CrossRefGoogle Scholar
  89. Wenger, M. J., Copeland, A. M., Bittner, J. L., & Thomas, R. D. (2008). Evidence for criterion shifts in visual perceptual learning: Data and Implications. Perception & Psychophysics, 70(7), 1248–1273.CrossRefGoogle Scholar
  90. Werner, S., & Thies, B. (2000). Is “Change Blindness” attenuated by domain-specific expertise? An expert-novices comparison of change detection in football images. Visual Cognition, 7(1–3), 163–173.CrossRefGoogle Scholar
  91. Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of Vision, 4(11), 1120–1135.  https://doi.org/10.1167/4.12.11.CrossRefPubMedGoogle Scholar
  92. Wright, B., & Fitzgerald, M. B. (2001). Different patterns of human discrimination learning for two interaural cues to sound source localization. Proceedings of the National Academy of Sciences, 98(21), 12307–12312.CrossRefGoogle Scholar
  93. Wright, B. A., & Sabin, A. (2007). Perceptual learning: how much daily training is enough? Experimental Brain Research, 180(4), 727–736.CrossRefPubMedGoogle Scholar
  94. Wright, B. A., & Zhang, Y. (2009a). A review of the generalization of auditory learning. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364, 301–311.CrossRefPubMedGoogle Scholar
  95. Wright, B. A., & Zhang, Y. (2009b). Insights into human auditory processing gained from perceptual learning. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (Vol. IV, pp. 353–366). Cambridge: The MIT Press.Google Scholar
  96. Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 452, 233–235.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Brain and Mind InstituteUniversity of Western OntarioLondonCanada
  2. 2.Department of PsychologyUniversity of Nevada, Las VegasLas VegasUSA

Personalised recommendations