Advertisement

The eyes do not have it after all? Attention is not automatically biased towards faces and eyes

  • Effie J. PereiraEmail author
  • Elina Birmingham
  • Jelena Ristic
Original Article
  • 91 Downloads

Abstract

It is commonly accepted that attention is spontaneously biased towards faces and eyes. However, the role of stimulus features and task settings in this finding has not yet been systematically investigated. Here, we tested if faces and facial features bias attention spontaneously when stimulus factors, task properties, response conditions, and eye movements are controlled. In three experiments, participants viewed face, house, and control scrambled face–house images in an upright and inverted orientation. The task was to discriminate a target that appeared with equal probability at the previous location of the face, house, or the control image. In all experiments, our data indicated no spontaneous biasing of attention for targets occurring at the previous location of the face. Experiment 3, which measured oculomotor biasing, suggested a reliable but infrequent saccadic bias towards the eye region of upright faces. Importantly, these results did not reflect our specific laboratory settings, as in Experiment 4, we present a full replication of a classic finding in the literature demonstrating reliable social attention bias. Together, these data suggest that attentional biasing for social information is task and context mediated, and less robust than originally thought.

Notes

Acknowledgements

Many thanks to J. Michelin and E. Bossard for their help with this project. The data sets from the current study are available from the corresponding author on reasonable request.

Funding

This study was funded by Natural Sciences and Engineering Research Council of Canada (NSERC) and NSERC-CREATE graduate fellowships to EJP, NSERC, and Social Sciences and Humanities Research Council (SSHRC) grants to EB and JR, and W. Dawson award to JR.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in these studies involved human participants and were in accordance with the ethical standards of the institutional and/or national research committee, and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Anderson, C. J., Colombo, J., & Shaddy, J. (2006). Visual scanning and pupillary responses in young children with autism spectrum disorder. Journal of Clinical and Experimental Neuropsychology, 28, 1238–1256.CrossRefGoogle Scholar
  2. Ariga, A., & Arihara, K. (2017a). Attentional capture by spatiotemporally task-irrelevant faces: supportive evidence for Sato and Kawahara (2015). Psychological research, 1–7.  https://doi.org/10.1007/s00426-017-0869-3.
  3. Ariga, A., & Arihara, K. (2017b). Visual attention is captured by task-trrelevant faces, but not by pareidolia faces. Paper presented at the 2017 9th International Conference on Knowledge and Smart Technology (KST), Chonburi, Thailand.Google Scholar
  4. Bar-Haim, Y., Shulman, C., Lamy, D., & Reuveni, A. (2006). Attention to eyes and mouth in high-functioning children with autism. Journal of Autism and Developmental Disorders, 36(1), 131–137.  https://doi.org/10.1007/s10803-005-0046-1.CrossRefPubMedGoogle Scholar
  5. Baron-Cohen, S. (1995). Mindblindness: an essay on autism and theory of mind. Cambridge: MIT Press.Google Scholar
  6. Bentin, S., Allison, T., Puce, A., Perez, E., & McCarthy, G. (1996). Electrophysiological Studies of Face Perception in Humans. Journal of Cognitive Neuroscience, 8(6), 551–565.  https://doi.org/10.1162/jocn.1996.8.6.551.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bertelson, P. (1967). The time course of preparation. Quarterly Journal of Experimental Psychology, 19(3), 272–279.  https://doi.org/10.1080/14640746708400102.CrossRefPubMedGoogle Scholar
  8. Bindemann, M., & Burton, A. M. (2008). Attention to upside-down faces: An exception to the inversion effect. Vision Research, 48(25), 2555–2561.  https://doi.org/10.1016/j.visres.2008.09.001.CrossRefPubMedGoogle Scholar
  9. Bindemann, M., Burton, A. M., Hooge, I. T. C., Jenkins, R., & DeHaan, E. H. F (2005). Faces retain attention. Psychonomic Bulletin & Review, 12(6), 1048–1053.CrossRefGoogle Scholar
  10. Bindemann, M., Burton, A. M., Langton, S. R., Schweinberger, S. R., & Doherty, M. J. (2007). The control of attention to faces. Journal of Vision, 7(10), 1–8.  https://doi.org/10.1167/7.10.15.CrossRefPubMedGoogle Scholar
  11. Birmingham, E., Bischof, W., & Kingstone, A. (2007). Why do we look at people’s eyes? Journal of Eye Movement Research, 1(1), 1–6.Google Scholar
  12. Birmingham, E., Bischof, W., & Kingstone, A. (2008a). Gaze selection in complex social scenes. Visual Cognition, 16(2–3), 341–355.  https://doi.org/10.1080/13506280701434532.CrossRefGoogle Scholar
  13. Birmingham, E., Bischof, W., & Kingstone, A. (2008b). Social attention and real-world scenes: The roles of action, competition and social content. The Quarterly Journal of Experimental Psychology, 61(7), 986–998.CrossRefGoogle Scholar
  14. Birmingham, E., & Kingstone, A. (2009). Human Social Attention. Annals of the New York Academy of Sciences, 1156(1), 118–140.  https://doi.org/10.1111/j.1749-6632.2009.04468.x.CrossRefPubMedGoogle Scholar
  15. Birmingham, E., Ristic, J., & Kingstone, A. (2012). Investigating social attention: A case for increasing stimulus complexity in the laboratory. In Cognitive neuroscience, development, and psychopathology: Typical and atypical developmental trajectories of attention (pp. 251–276). New York: Oxford University Press.CrossRefGoogle Scholar
  16. Boggia, J., & Ristic, J. (2015). Social event segmentation. Quarterly Journal of Experimental Psychology, 68(4), 731–744.CrossRefGoogle Scholar
  17. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.CrossRefGoogle Scholar
  18. Campbell, F. W. (1957). The depth of field of the human eye. Optica Acta: International Journal of Optics, 4(4), 157–164.  https://doi.org/10.1080/713826091.CrossRefGoogle Scholar
  19. Capozzi, F., & Ristic, J. (2018). How attention gates social interactions. Ann N Y Acad Sci.  https://doi.org/10.1111/nyas.13854.CrossRefPubMedGoogle Scholar
  20. Cerf, M., Frady, E. P., & Koch, C. (2009). Faces and text attract gaze independent of the task: Experimental data and computer model. Journal of Vision, 9(12), 10–10.  https://doi.org/10.1167/9.12.10.CrossRefPubMedGoogle Scholar
  21. Cerf, M., Harel, J., Einhäuser, W., & Koch, C. (2008). Predicting human gaze using low-level saliency combined with face detection. Paper presented at the Advances in neural information processing systems.Google Scholar
  22. Cooper, R. M., & Langton, S. R. Attentional bias to angry faces using the dot-probe task? It depends when you look for it. Behaviour Research and Therapy. 44(9), 1321–1329.Google Scholar
  23. Crouzet, S. M., Kirchner, H., & Thorpe, S. J. (2010). Fast saccades toward faces: Face detection in just 100 ms. Journal of Vision, 10(4), 1–17.  https://doi.org/10.1167/10.4.16.CrossRefPubMedGoogle Scholar
  24. Crouzet, S. M., & Thorpe, S. J. (2011). Low-level cues and ultra-fast face detection. Frontiers in Psychology. 2(342).  https://doi.org/10.3389/fpsyg.2011.00342.
  25. de Haan, B., Morgan, P. S., & Rorden, C. (2008). Covert orienting of attention and overt eye movements activate identical brain regions. Brain Research, 1204, 102–111.  https://doi.org/10.1016/j.brainres.2008.01.105.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Devue, C., Belopolsky, A. V., & Theeuwes, J. (2012). Oculomotor guidance and capture by irrelevant faces. PLoS One. 7(4), e34598.Google Scholar
  27. Devue, C., Laloyaux, C., Feyers, D., Theeuwes, J., & Brédart, S. (2009). Do pictures of faces, and which ones, capture attention in the inattentional-blindness paradigm? Perception, 38(4), 552–568.  https://doi.org/10.1068/p6049. doi.CrossRefPubMedGoogle Scholar
  28. Dunbar, R. I. M., & Shultz, S. (2007). Evolution in the social brain. Science, 317, 1344.CrossRefGoogle Scholar
  29. Emery, N. J. (2000). The eyes have it: The neuroethology, function and evolution of social gaze. Neuroscience & Biobehavioral Reviews, 24, 581–604.CrossRefGoogle Scholar
  30. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.  https://doi.org/10.3758/bf03193146.CrossRefPubMedGoogle Scholar
  31. Findlay, J. M. (2003). Visual Selection, Covert Attention and Eye Movements. In J. M. Findlay & I. D. Gilchrist (Eds.), Active vision: The psychology of looking and seeing. Oxford: Oxford University Press.CrossRefGoogle Scholar
  32. Fletcher-Watson, S., Findlay, J. M., Leekam, S. R., & Benson, V. (2008). Rapid detection of person information in a naturalistic scene. Perception, 37(4), 571–583.  https://doi.org/10.1068/p5705. doi.CrossRefPubMedGoogle Scholar
  33. Frank, M. C., Vul, E., & Johnson, S. P. (2009). Development of infants’ attention to faces during the first year. Cognition, 110(2), 160–170.  https://doi.org/10.1016/j.cognition.2008.11.010.CrossRefPubMedGoogle Scholar
  34. Frewen, P. A., Dozois, D. J. A., Joanisse, M. F., & Neufeld, R. W. J. (2008). Selective attention to threat versus reward: Meta-analysis and neural-network modeling of the dot-probe task. Clinical Psychology Review, 28(2), 307–337.  https://doi.org/10.1016/j.cpr.2007.05.006.CrossRefPubMedGoogle Scholar
  35. Gauthier, I., Tarr, M. J., Moylan, J., Skudlarski, P., Gore, J. C., & Anderson, A. W. (2000). The fusiform “face area” is part of a network that processes faces at the individual level. Journal of Cognitive Neuroscience, 12(3), 495–504.CrossRefGoogle Scholar
  36. Gobel, M. S., Kim, H. S., & Richardson, D. C. (2015). The dual function of social gaze. Cognition, 136(Supplement C), 359–364.  https://doi.org/10.1016/j.cognition.2014.11.040.
  37. Guillon, Q., Hadjikhani, N., Baduel, S., & Roge, B. (2014). Visual social attention in autism spectrum disorder: insights from eye tracking studies. Neuroscience & Biobehavioral Reviews, 42, 279–297.  https://doi.org/10.1016/j.neubiorev.2014.03.013.CrossRefGoogle Scholar
  38. Guillon, Q., Rogé, B., Afzali, M. H., Baduel, S., Kruck, J., & Hadjikhani, N. (2016). Intact perception but abnormal orientation towards face-like objects in young children with ASD. Scientific Reports. 6, 22119.  https://doi.org/10.1038/srep22119.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Haxby, J. V., Norwitz, B., Ungerleider, L. G., Maisog, J. M., Pietrini, P., & Grady, C. L. (1994). The functional organization of human extrastriate cortex: A PET-rCBF study of selective attention to faces and locations. The Journal of Neuroscience, 14(11), 6336–6353.CrossRefGoogle Scholar
  40. Hayward, D. A., & Ristic, J. (2013). Measuring attention using the Posner cuing paradigm: The role of across and within trial target probabilities. Frontiers in Human Neuroscience, 7, 205.  https://doi.org/10.3389/fnhum.2013.00205.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hayward, D. A., Voorhies, W., Morris, J. L., Capozzi, F., & Ristic, J. (2017). Staring reality in the face: A comparison of social attention across laboratory and real world measures suggests little common ground. Canadian Journal of Experimental Psychology, 71(3), 212–225.CrossRefGoogle Scholar
  42. Hochberg, J., & Galper, R. E. (1967). Recognition of faces: An exploratory study. Psychonomic Science, 9, 619–620.CrossRefGoogle Scholar
  43. Holm, S. (1979). A simple sequential rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65–70.Google Scholar
  44. Hunt, A. R., & Kingstone, A. (2003a). Covert and overt voluntary attention: Linked or independent? Cognitive Brain Research, 18(1), 102–105.  https://doi.org/10.1016/j.cogbrainres.2003.08.006.CrossRefPubMedGoogle Scholar
  45. Hunt, A. R., & Kingstone, A. (2003b). Inhibition of return: Dissociating attentional and oculomotor components. Journal of Experimental Psychology: Human Perception & Performance, 29(5), 1068–1074.  https://doi.org/10.1037/0096-1523.29.5.1068.CrossRefGoogle Scholar
  46. Itier, R. J., Latinus, M., & Taylor, M. J. (2006). Face, eye and object early processing: what is the face specificity? Neuroimage, 29(2), 667–676.  https://doi.org/10.1016/j.neuroimage.2005.07.041.CrossRefPubMedGoogle Scholar
  47. Itier, R. J., & Taylor, M. J. (2002). Inversion and contrast polarity reversal affect both encoding and recognition processes of unfamiliar faces: A repetition study using ERPs. Neuroimage, 15(2), 353–372.  https://doi.org/10.1006/nimg.2001.0982.CrossRefPubMedGoogle Scholar
  48. Itier, R. J., & Taylor, M. J. (2004). Face recognition memory and configural processing: A developmental ERP study using upright, inverted, and contrast-reversed faces. Journal of Cognitive Neuroscience, 16(3), 487–502.  https://doi.org/10.1162/089892904322926818.CrossRefPubMedGoogle Scholar
  49. Jonides, J. (1981). Voluntary versus automatic control over the mind’s eye’s movement. In J. B. Long & A. D. Baddeley (Eds.), Attention and performance (Vol (IX, pp. 187–203). Hillsdale: Erlbaum.Google Scholar
  50. Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. The Journal of Neuroscience, 17(11), 4302–4311.CrossRefGoogle Scholar
  51. Kanwisher, N., & Yovel, G. (2006). The fusiform face area: A cortical region specialized for the perception of faces. Philosophical Transactions of the Royal Society London B: Biological Sciences, 361(1476), 2109–2128.  https://doi.org/10.1098/rstb.2006.1934.CrossRefGoogle Scholar
  52. Kendall, L. N., Raffaelli, Q., Kingstone, A., & Todd, R. M. (2016). Iconic faces are not real faces: Enhanced emotion detection and altered neural processing as faces become more iconic. Cognitive Research: Principles and Implications, 1(1), 19.  https://doi.org/10.1186/s41235-016-0021-8.CrossRefGoogle Scholar
  53. Klein, R. M., & MacInnes, W. J. (1999). Inhibition of return is a foraging facilitator in visual search. Psychological Science, 10, 346–352.CrossRefGoogle Scholar
  54. Klein, R. M., & Pontefract, A. (1994). Does oculomotor readiness mediate cognitive control of visual attention? Revisited! In Attention and performance 15: Conscious and nonconscious information processing (pp. 333–350). Cambridge: The MIT Press.Google Scholar
  55. Kobayashi, H., & Kohshima, S. (2001). Unique morphology of the human eye and its adaptive meaning: Comparative studies on external morphology of the primate eye. Journal of Human Evolution, 40, 419–435.CrossRefGoogle Scholar
  56. Kuhn, G., Teszka, R., Tenaw, N., & Kingstone, A. (2016). Don’t be fooled! Attentional responses to social cues in a face-to-face and video magic trick reveals greater top-down control for overt than covert attention. Cognition, 146, 136–142.  https://doi.org/10.1016/j.cognition.2015.08.005.CrossRefPubMedGoogle Scholar
  57. Laidlaw, K. E. W., Badiudeen, T. A., Zhu, M. J. H., & Kingstone, A. (2015). A fresh look at saccadic trajectories and task irrelevant stimuli: Social relevance matters. Vision Research. 111, Part A, 82–90.  https://doi.org/10.1016/j.visres.2015.03.024.
  58. Laidlaw, K. E. W., Foulsham, T., Kuhn, G., & Kingstone, A. (2011). Potential social interactions are important to social attention. Proceedings of the National Academy of Sciences, 108(14), 5548–5553.  https://doi.org/10.1073/pnas.1017022108.CrossRefGoogle Scholar
  59. Laidlaw, K. E. W., Risko, E. F., & Kingstone, A. (2012). A new look at social attention: orienting to the eyes is not (entirely) under volitional control. Journal of Experimental Psychology: Human Perception & Performance, 38(5), 1132–1143.  https://doi.org/10.1037/a0027075.CrossRefGoogle Scholar
  60. Langton, S. R., Law, A. S., Burton, A. M., & Schweinberger, S. R. (2008). Attention capture by faces. Cognition, 107(1), 330–342.  https://doi.org/10.1016/j.cognition.2007.07.012.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Lavie, N., Ro, T., & Russell, C. (2003). The role of perceptual load in processing distractor faces. Psychological Science, 14, 510–515.CrossRefGoogle Scholar
  62. Little, A. C., Jones, B. C., & DeBruine, L. M. (2011). The many faces of research on face perception. Philosophical Transactions of the Royal Society London B: Biological Sciences, 366(1571), 1634–1637.  https://doi.org/10.1098/rstb.2010.0386.CrossRefGoogle Scholar
  63. Ludbrook, J. (2000). Multiple inferences using confidence intervals. Clinical and Experimental Pharmacology and Physiology, 27(3), 212–215.  https://doi.org/10.1046/j.1440-1681.2000.03223.x.CrossRefPubMedGoogle Scholar
  64. MacLeod, C., Mathews, A. M., & Tata, P. (1986). Attentional bias in emotional disorders. Journal of Abnormal Psychology, 95, 15–20.CrossRefGoogle Scholar
  65. McCarthy, G., Puce, A., Gore, J. C., & Allison, T. (1997). Face-specific processing in the human fusiform gyrus. Journal of Cognitive Neuroscience, 9(5), 605–610.  https://doi.org/10.1162/jocn.1997.9.5.605.CrossRefPubMedGoogle Scholar
  66. McPartland, J. C., Webb, S. J., Keehn, B., & Dawson, G. (2011). Patterns of visual attention to faces and objects in autism spectrum disorder. Journal of Autism and Developmental Disorders, 41(2), 148–157.CrossRefGoogle Scholar
  67. Nakamura, K., & Kawabata, H. (2014). Attractive faces temporally modulate visual attention. Frontiers in Psychology. 5(620).  https://doi.org/10.3389/fpsyg.2014.00620.
  68. Navon, D., & Margalit, B. (1983). Allocation of attention according to informativeness in visual recognition. Quarterly Journal of Experimental Psychology, 35, 497–512.CrossRefGoogle Scholar
  69. Nobre, A. C., Gitelman, D. R., Dias, E. C., & Mesulam, M. M. (2000). Covert visual spatial orienting and saccades: Overlapping neural systems. Neuroimage, 11(3), 210–216.  https://doi.org/10.1006/nimg.2000.0539.CrossRefPubMedGoogle Scholar
  70. Nummenmaa, L., & Calder, A. J. (2008). Neural mechanisms of social attention. Trends in Cognitive Sciences, 13(3), 135–143.  https://doi.org/10.1016/j.tics.2008.12.006.CrossRefGoogle Scholar
  71. Perrett, D. I., Hietanen, J. K., Oram, M. W., Benson, P. J., & Rolls, E. T. (1992). Organization and functions of cells responsive to faces in the temporal cortex [and discussion]. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 335(1273), 23–30.CrossRefGoogle Scholar
  72. Perrett, D. I., Smith, P. A. J., Potter, D. D., Mistlin, A. J., Head, A. S., Milner, A. D., & Jeeves, M. A. (1985). Visual cells in the temporal cortex sensitive to face view and gaze direction. Proceedings of the Royal Society of London. Series B, Biological Sciences, 223(1232), 293–317.CrossRefGoogle Scholar
  73. Peterson, M. S., Kramer, A. F., & Irwin, D. E. (2004). Covert shifts of attention precede involuntary eye movements. Perception & Psychophysics, 66(3), 398–405.  https://doi.org/10.3758/bf03194888.CrossRefGoogle Scholar
  74. Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25.  https://doi.org/10.1080/00335558008248231.CrossRefPubMedGoogle Scholar
  75. Puce, A., Allison, T., Bentin, S., Gore, J. C., & McCarthy, G. (1998). Temporal cortex activation in humans viewing eye and mouth movements. The Journal of Neuroscience, 18(6), 2188–2199.CrossRefGoogle Scholar
  76. Rhodes, G. (1985). Lateralized processes in face recognition. British Journal of Psychology, 76(2), 249–271.  https://doi.org/10.1111/j.2044-8295.1985.tb01949.x.CrossRefPubMedGoogle Scholar
  77. Riby, D., & Hancock, P. J. B. (2009). Looking at movies and cartoons: eye-tracking evidence from Williams syndrome and autism. Journal of Intellectual Disability Research, 53(2), 169–181.  https://doi.org/10.1111/j.1365-2788.2008.01142.x.CrossRefPubMedGoogle Scholar
  78. Risko, E. F., Richardson, D. C., & Kingstone, A. (2016). Breaking the fourth wall of cognitive science. Current Directions in Psychological Science, 25(1), 70–74.  https://doi.org/10.1177/0963721415617806.CrossRefGoogle Scholar
  79. Ro, T., Russell, C., & Lavie, N. (2001). Changing faces: A detection advantage in the flicker paradigm. Psychological Science, 12(1), 94–99.CrossRefGoogle Scholar
  80. Rossion, B., Joyce, C. A., Cottrell, G. W., & Tarr, M. J. (2003). Early lateralization and orientation tuning for face, word, and object processing in the visual cortex. Neuroimage, 20(3), 1609–1624.  https://doi.org/10.1016/j.neuroimage.2003.07.010.CrossRefPubMedGoogle Scholar
  81. Rousselet, G. A., Ince, R. A., van Rijsbergen, N. J., & Schyns, P. G. (2014). Eye coding mechanisms in early human face event-related potentials. Journal of Vision, 14(13), 1–24.  https://doi.org/10.1167/14.13.7.CrossRefGoogle Scholar
  82. Sato, S., & Kawahara, J. I. (2015). Attentional capture by completely task-irrelevant faces. Psychological Research Psychologische Forschung, 79(4), 523–533.  https://doi.org/10.1007/s00426-014-0599-8.CrossRefPubMedGoogle Scholar
  83. Schaller, M., Park, J. H., & Kenrick, D. T. (2007). Human evolution & social cognition. In R. I. M. Dunbar & L. Barrett (Eds.), Oxford handbook of evolutionary psychology. Oxford: Oxford University Press.Google Scholar
  84. Schmukle, S. C. (2005). Unreliability of the dot probe task. European Journal of Personality, 19(7), 595–605.  https://doi.org/10.1002/per.554.CrossRefGoogle Scholar
  85. Silva, A., Macedo, A. F., Albuquerque, P. B., & Arantes, J. (2016). Always on my mind? Recognition of attractive faces may not depend on attention. Frontiers in Psychology, 7, 53.  https://doi.org/10.3389/fpsyg.2016.00053.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Simion, F., & Giorgio, E. D. (2015). Face perception and processing in early infancy: Inborn predispositions and developmental changes. Frontiers in Psychology, 6, 969.  https://doi.org/10.3389/fpsyg.2015.00969.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Smilek, D., Birmingham, E., Cameron, D., Bischof, W., & Kingstone, A. (2006). Cognitive ethology and exploring attention in real-world scenes. Brain Research, 1080(1), 101–119.  https://doi.org/10.1016/j.brainres.2005.12.090.CrossRefPubMedGoogle Scholar
  88. Smith, T. J. (2013). Watching you watch movies: Using eye tracking to inform film theory.Google Scholar
  89. Sui, J., & Liu, C. H. (2009). Can beauty be ignored? Effects of facial attractiveness on covert attention. Psychonomic Bulletin & Review, 16(2), 276–281.  https://doi.org/10.3758/PBR.16.2.276.CrossRefGoogle Scholar
  90. Theeuwes, J., & Van der Stigchel, S. (2006). Faces capture attention: Evidence from inhibition of return. Visual Cognition, 13(6), 657–665.  https://doi.org/10.1080/13506280500410949.CrossRefGoogle Scholar
  91. Thomas, L. A., De Bellis, M. D., Graham, R., & LaBar, K. S. (2007). Development of emotional facial recognition in late childhood and adolescence. Developmental Science, 10(5), 547–558.  https://doi.org/10.1111/j.1467-7687.2007.00614.x.CrossRefPubMedGoogle Scholar
  92. Tomalski, P., Johnson, M. H., & Csibra, G. (2009). Temporal-nasal asymmetry of rapid orienting to face-like stimuli. NeuroReport, 20(15), 1309–1312.CrossRefGoogle Scholar
  93. Van der Stigchel, S., & Theeuwes, J. (2007). The relationship between covert and overt attention in endogenous cuing. Perception & Psychophysics, 69(5), 719–731.CrossRefGoogle Scholar
  94. Võ, M. L.-H., Smith, T. J., Mital, P. K., & Henderson, J. M. (2012). Do the eyes really have it? Dynamic allocation of attention when viewing moving faces. Journal of Vision, 12(13), 3.  https://doi.org/10.1167/12.13.3.CrossRefPubMedGoogle Scholar
  95. Vuilleumier, P. (2000). Faces call for attention: evidence from patients with visual extinction. Neuropsychologia, 38, 693–700.CrossRefGoogle Scholar
  96. Willenbockel, V., Sadr, J., Fiset, D., Horne, G. O., Gosselin, F., & Tanaka, J. W. (2010). Controlling low-level image properties: The SHINE toolbox. Behavior Research Methods, 42(3), 671–684.  https://doi.org/10.3758/brm.42.3.671.CrossRefPubMedGoogle Scholar
  97. Wu, D. W.-L., Bischof, W. F., & Kingstone, A. (2013). Looking while eating: The importance of social context to social attention. Scientific Reports, 3, 2356.CrossRefGoogle Scholar
  98. Yarbus, A. L. (1967). Eye Movements & Vision. New York: Plenum Press.CrossRefGoogle Scholar
  99. Yin, R. K. (1969). Looking at upside-down faces. Journal of Experimental Psychology, 81(1), 141–145.CrossRefGoogle Scholar
  100. Yovel, G., Levy, J., Grabowecky, M., & Paller, K. A. (2003). Neural correlates of the left-visual-field superiority in face perception appear at multiple stages of face processing. Journal of Cognitive Neuroscience, 15(3), 462–474.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PsychologyMcGill UniversityMontrealCanada
  2. 2.Faculty of EducationSimon Fraser UniversityBurnabyCanada

Personalised recommendations