Psychological Research

, Volume 83, Issue 7, pp 1485–1495 | Cite as

Time dependency of the SNARC effect for different number formats: evidence from saccadic responses

  • Alexandra PressigoutEmail author
  • Agnès Charvillat
  • Karima Mersad
  • Karine Doré-Mazars
Original Article


In line with the suggestion that the strength of the spatial numerical association of response codes (SNARC) effect was time dependent, the aim of the present study was to assess whether the association strength depends on the processing time of numerical quantity and/or of the time to initiate responses. More specifically, we examined whether and how the SNARC effect could be modulated by number format and effector type. Experiment 1 compared the effect induced by Arabic numbers and number words on the basis of saccadic responses in a parity judgment task. Indeed, previous studies have shown that Arabic numbers lead to faster processing than number words. The results replicated the SNARC effect with Arabic numbers, but not with number words. Experiment 2 was similar to Experiment 1, but this time manual responses (i.e., responses far slower than saccadic ones) were recorded. A strong SNARC effect was observed for both number formats. Further analyses revealed a correlation between mean individual response times and the strength of the SNARC effect. We proposed that the initiation times for saccadic responses may be too short for the SNARC effect to appear, in particular with the written number format for which activation of magnitude takes time. We conclude in terms of time variations resulting from processing specificities related with number format, effector type and also individual reaction and processing speed.



We warmly thank all reviewers for considering this paper. We thank Dr Christelle Lemoine-Lardennois and Dr Alexandra Fayel for their technical skills as well as all participants who volunteered for this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.


  1. Brysbaert, M. (2018) Numbers and language: What’s new in the past 25 years?. In A. Henik & W. Fias (Eds.), Heterogeneity of Function in Numerical Cognition. Amsterdam: Elsevier Academic Press.Google Scholar
  2. Bulf, H., Cassia, V. M., & de Hevia, M. D. (2014). Are numbers, size and brightness equally efficient in orienting visual attention? Evidence from an eye-tracking study. PLoS One, 9(6), e99499. Scholar
  3. Bulf, H., de Hevia, M. D., & Cassia, V. M. (2016). Small on the left, large on the right: Numbers orient visual attention onto space in preverbal infants. Developmental Science, 19(3), 394–401.CrossRefPubMedGoogle Scholar
  4. Bull, R., Cleland, A. A., & Mitchell, T. (2013). Sex differences in the spatial representation of number. Journal of Experimental Psychology: General, 142(1), 181.CrossRefGoogle Scholar
  5. Carling, K. (2000). Resistant outlier rules and the non-Gaussian case. Computational Statistics & Data Analysis, 33(3), 249–258.CrossRefGoogle Scholar
  6. Casarotti, M., Michielin, M., Zorzi, M., & Umiltà, C. (2007). Temporal order judgment reveals how number magnitude affects visuospatial attention. Cognition, 102(1), 101–117.CrossRefGoogle Scholar
  7. Cipora, K., & Nuerk, H. C. (2013). Is the SNARC effect related to the level of mathematics? No systematic relationship observed despite more power, more repetitions, and more direct assessment of arithmetic skill. Quarterly journal of experimental psychology, 66(10), 1974–1991.CrossRefGoogle Scholar
  8. Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: a dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108(1), 204.CrossRefPubMedGoogle Scholar
  9. Damian, M. F. (2004). Asymmetries in the processing of Arabic digits and number words. Memory & Cognition, 32(1), 164–171.CrossRefGoogle Scholar
  10. Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371.CrossRefGoogle Scholar
  11. Fabbri, M. (2013). Finger counting habits and spatial-numerical association in horizontal and vertical orientations. Journal of Cognition and Culture, 13(1–2), 95–110.CrossRefGoogle Scholar
  12. Fattorini, E., Pinto, M., Rotondaro, F., & Doricchi, F. (2015). Perceiving numbers does not cause automatic shifts of spatial attention. Cortex, 73, 298–316.CrossRefPubMedGoogle Scholar
  13. Fias, W. (1996). The importance of magnitude information in numerical processing: Evidence from the SNARC effect. Mathematical Cognition, 2(1), 95–110.CrossRefGoogle Scholar
  14. Fias, W. (2001). Two routes for the processing of verbal numbers: Evidence from the SNARC effect. Psychological Research Psychologische Forschung, 65(4), 250–259.CrossRefPubMedGoogle Scholar
  15. Fischer, M. H. (2001). Number processing induces spatial performance biases. Neurology, 57(5), 822–826.CrossRefPubMedGoogle Scholar
  16. Fischer, M. H. (2008). Finger counting habits modulate spatial-numerical associations. Cortex, 44(4), 386–392.CrossRefPubMedGoogle Scholar
  17. Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6(6), 555–556.CrossRefGoogle Scholar
  18. Fischer, M. H., Shaki, S., & Cruise, A. (2009). It takes just one word to quash a SNARC. Experimental Psychology, 56(5), 361–366.CrossRefPubMedGoogle Scholar
  19. Fischer, M. H., Warlop, N., Hill, R. L., & Fias, W. (2004). Oculomotor bias induced by number perception. Experimental Psychology, 51(2), 91–97.CrossRefPubMedGoogle Scholar
  20. Fitousi, D., Shaki, S., & Algom, D. (2009). The role of parity, physical size, and magnitude in numerical cognition: The SNARC effect revisited.. Perception & Psychophysics, 71(1), 143–155.CrossRefGoogle Scholar
  21. Ford, N., & Reynolds, M. G. (2016). Do Arabic numerals activate magnitude automatically? Evidence from the psychological refractory period paradigm. Psychonomic Bulletin & Review, 23(5), 1528–1533.CrossRefGoogle Scholar
  22. Gevers, W., Verguts, T., Reynvoet, B., Caessens, B., & Fias, W. (2006). Numbers and space: acomputational model of the SNARC effect. Journal of Experimental Psychology: Human Perception and Performance, 32(1), 32.PubMedGoogle Scholar
  23. Glaser, W. R. (1992). Picture naming. Cognition, 42(1), 61–105.CrossRefPubMedGoogle Scholar
  24. Hartmann, M., & Fischer, M. H. (2016). Exploring the numerical mind by eye-tracking: a special issue. Psychological Research Psychologische Forschung, 80, 325–333.CrossRefPubMedGoogle Scholar
  25. Hesse, P. N., Fiehler, K., & Bremmer, F. (2015). SNARC Effect in Different Effectors. Perception, 45(1–2), 180–195.PubMedGoogle Scholar
  26. Hines, T. M. (1990). An odd effect: Lengthened reaction times for judgments about odd digits. Memory & Cognition, 18(1), 40–46.CrossRefGoogle Scholar
  27. Keus, I. M., Jenks, K. M., & Schwarz, W. (2005). Psychophysiological evidence that the SNARC effect has its functional locus in a response selection stage. Cognitive Brain Research, 24(1), 48–56.CrossRefPubMedGoogle Scholar
  28. Lindemann, O., Alipour, A., & Fischer, M. H. (2011). Finger counting habits in middle eastern and western individuals: an online survey. Journal of Cross-Cultural Psychology, 42(4), 566–578.CrossRefGoogle Scholar
  29. Loetscher, T., Bockisch, C. J., & Brugger, P. (2008). Looking for the answer: The mind’s eye in number space. Neuroscience, 151(3), 725–729.CrossRefPubMedGoogle Scholar
  30. Loetscher, T., Bockisch, C. J., Nicholls, M. E., & Brugger, P. (2010). Eye position predicts what number you have in mind. Current Biology, 20(6), R264–R265.CrossRefGoogle Scholar
  31. Loetscher, T., Schwarz, U., Schubiger, M., & Brugger, P. (2008). Head turns bias the brain’s internal random generator. Current Biology, 18(2), R60–R62.CrossRefGoogle Scholar
  32. Macnamara, A., Keage, H. A., & Loetscher, T. (2018). Mapping of non-numerical domains on space: a systematic review and meta-analysis. Experimental Brain Research, 236, 335–346. Scholar
  33. Mock, J., Huber, S., Klein, E., & Moeller, K. (2016). Insights into numerical cognition: Considering eye-fixations in number processing and arithmetic. Psychological Research Psychologische Forschung, 80(3), 334–359.CrossRefPubMedGoogle Scholar
  34. Myachykov, A., Cangelosi, A., Ellis, R., & Fischer, M. H. (2015). The oculomotor resonance effect in spatial–numerical mapping. Actapsychologica, 161, 162–169.Google Scholar
  35. Myachykov, A., Ellis, R., Cangelosi, A., & Fischer, M. H. (2016). Ocular drift along the mental number line. Psychological Research Psychologische Forschung, 80(3), 379–388.CrossRefPubMedGoogle Scholar
  36. Nuerk, H. C., Iversen, W., & Willmes, K. (2004). Notational modulation of the SNARC and the MARC (linguistic markedness of response codes) effect. Quarterly Journal of Experimental Psychology Section A, 57(5), 835–863.CrossRefGoogle Scholar
  37. Nuerk, H. C., Wood, G., & Willmes, K. (2005). The universal SNARC effect: The association between number magnitude and space is amodal. Experimental Psychology, 52(3), 187–194.CrossRefPubMedGoogle Scholar
  38. Roettger, T. B., & Domahs, F. (2015). Grammatical number elicits SNARC and MARC effects as a function of task demands. The Quarterly Journal of Experimental Psychology, 68(6), 1231–1248.CrossRefPubMedGoogle Scholar
  39. Rugani, R., & de Hevia, M. D. (2017). Number-space associations without language: Evidence from preverbal human infants and non-human animal species. Psychonomic Bulletin & Review, 24(2), 352–369.CrossRefGoogle Scholar
  40. Schwarz, W., & Keus, I. M. (2004). Moving the eyes along the mental number line: Comparing SNARC effects with saccadic and manual responses. Perception & Psychophysics, 66(4), 651–664.CrossRefGoogle Scholar
  41. Shaki, S., Fischer, M. H., & Petrusic, W. M. (2009). Reading habits for both words and numbers contribute to the SNARC effect. Psychonomic Bulletin & Review, 16(2), 328–331.CrossRefGoogle Scholar
  42. van Dijck, J. P., Abrahamse, E. L., Acar, F., Ketels, B., & Fias, W. (2014). A working memory account of the interaction between numbers and spatial attention. The Quarterly Journal of Experimental Psychology, 67(8), 1500–1513.CrossRefPubMedGoogle Scholar
  43. Viarouge, A., Hubbard, E. M., & McCandliss, B. D. (2014). The cognitive mechanisms of the SNARC effect: An individual differences approach. PLoS ONE, 9(4), e95756. Scholar
  44. Wood, G., Nuerk, H. C., & Willmes, K. (2006). Crossed Hands and the Snarc Effect: A failure to Replicate Dehaene, Bossini and Giraux (1993). Cortex, 42(8), 1069–1079.CrossRefPubMedGoogle Scholar
  45. Wood, G., Willmes, K., Nuerk, H.-C., & Fischer, M. H. (2008). On the cognitive link between space and number: A meta-analysis of the SNARC effect. Psychology Science, 50(4), 489–525.Google Scholar
  46. Zebian, S. (2005). Linkages between number concepts, spatial thinking, and directionality of writing: The SNARC effect and the reverse SNARC effect in English and Arabic monoliterates, biliterates, and illiterate Arabic speakers. Journal of Cognition and Culture, 5(1), 165–190.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Alexandra Pressigout
    • 1
    Email author
  • Agnès Charvillat
    • 1
  • Karima Mersad
    • 1
  • Karine Doré-Mazars
    • 1
  1. 1.Laboratoire Vision Action Cognition, EA7326, Institut de PsychologieUniversité Paris DescartesBoulogne-Billancourt CedexFrance

Personalised recommendations