Psychological Research

, Volume 83, Issue 7, pp 1531–1542 | Cite as

When less is more: costs and benefits of varied vs. fixed content and structure in short-term task switching training

  • Katrina SabahEmail author
  • Thomas Dolk
  • Nachshon Meiran
  • Gesine Dreisbach
Original Article


Training variability has been brought forward as one possible moderator for wider scale transfer effects in cognitive training. However, little is known about which aspects of task variability are important for optimizing training outcomes. This study systematically examined the impact of variability in the different task components on outcome measures, here manipulating content (whether the task stimuli remained fixed or changed between blocks) and the deeper structural task configuration (task sequence: whether the task sequence was fixed or random). Short-term task switching training was implemented with one of four training variability conditions: fixed content\fixed structure; fixed content\ random structure; varied content\fixed structure and varied content\varied structure. The experiment consisted of a baseline block, seven training blocks (learning phase), followed by two transfer blocks, one with fixed and one with random task structure, respectively. In the learning phase, more rapid training gains were observed in the fixed content as compared to varied content. Interestingly, training with fixed content resulted in a trend for costs when transferred to a novel task switching context. In contrast, moderate transfer gains were noted in the varied content condition, manifested specifically on switch trials. These results suggest that task (content) variability is one of the means to improve positive transfer and avoid negative transfer. Additionally, and in agreement with the wide literature on training, this finding suggests that conditions that prevent training gains are in fact beneficial for learning generalization.


Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Research involving human and animal participants

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

426_2018_1006_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 18 KB)


  1. Andreadis, N., & Quinlan, P. T. (2010). Task switching under predictable and unpredictable circumstances. Attention, Perception, and Psychophysics, 72(7), 1776–1790. CrossRefGoogle Scholar
  2. Angevaren, M., Vanhees, L., Wendel-Vos, W., Verhaar, H. J. J., Aufdemkampe, G., Aleman, A., & Verschuren, W. M. M. (2007). Intensity, but not duration, of physical activities is related to cognitive function. European Journal of Cardiovascular Prevention & Rehabilitation, 14(6), 825–830. Scholar
  3. Baniqued, P. L., Allen, C. M., Kranz, M. B., Johnson, K., Sipolins, A., Dickens, C., … Kramer, A. F. (2015). Working memory, reasoning, and task switching training: Transfer effects, limitations, and great expectations?. PLoS One, 10(11).
  4. Buchler, N. G., Hoyer, W. J., & Cerella, J. (2008). Rules and more rules: The effects of multiple tasks, extensive training, and aging on task-switching performance. Memory and Cognition, 36(4), 735–748. Scholar
  5. Buitenweg, J. I. V., Murre, J. M. J., & Ridderinkhof, K. R. (2012). Brain training in progress: a review of trainability in healthy seniors. Frontiers in Human Neuroscience. 6. Scholar
  6. Carnahan, H., Van Eerd, D. L., & Allard, F. (1990). A note on the relationship between task requirements and the contextual interference effect. Journal of Motor Behavior, 22(1), 159–169. Scholar
  7. Cole, M. W., Etzel, J. A., Zacks, J. M., Schneider, W., & Braver, T. S. (2011). Rapid Transfer of Abstract Rules to Novel Contexts in Human Lateral Prefrontal Cortex. Frontiers in Human Neuroscience. 5. Scholar
  8. Collins, A. G. E., & Frank, M. J. (2013). Cognitive control over learning: Creating, clustering, and generalizing task-set structure. Psychological Review, 120(1), 190–229. Scholar
  9. DeWitt, T. J., Sih, A., & Wilson, D. S. (1998). Costs and limits of phenotypic plasticity. Trends in ecology and evolution.
  10. Dougherty, M. R., Hamovitz, T., & Tidwell, J. W. (2016). Reevaluating the effectiveness of n-back training on transfer through the Bayesian lens: support for the null. Psychonomic Bulletin and Review, 23(1), 306–316. Scholar
  11. Dreisbach, G. (2012). Mechanisms of cognitive control: the functional role of task rules. Current Directions in Psychological Science, 21(4), 227–231. Scholar
  12. Dreisbach, G., & Wenke, D. (2011). The shielding function of task sets and its relaxation during task switching. Journal of Experimental Psychology: Learning Memory and Cognition, 37(6), 1540–1546. Scholar
  13. Düzel, E., Bunzeck, N., Guitart-Masip, M., & Düzel, S. (2010). NOvelty-related Motivation of Anticipation and exploration by Dopamine (NOMAD): implications for healthy aging. Neuroscience and Biobehavioral Reviews. Scholar
  14. Eskes, G. A., Longman, S., Brown, A. D., McMorris, C. A., Langdon, K. D., Hogan, D. B., & Poulin, M. (2010). Contribution of physical fitness, cerebrovascular reserve and cognitive stimulation to cognitive function in post-menopausal women. Frontiers in Aging Neuroscience, 2(OCT).
  15. Fissler, P., Küster, O., Schlee, W., & Kolassa, I. T. (2013). Novelty interventions to enhance broad cognitive abilities and prevent dementia: synergistic approaches for the facilitation of positive plastic change. Progress in Brain Research, 207, 403–434. Scholar
  16. Fritsch, T., Smyth, K. A., Debanne, S. M., Petot, G. J., & Friedland, R. P. (2005). Participation in novelty-seeking leisure activities and Alzheimer’s disease. Journal of Geriatric Psychiatry and Neurology, 18(3), 134–141. Scholar
  17. Gabriele, T. E., Hall, C. R., & Buckolz, E. E. (1987). Practice schedule effects on the acquisition and retention of a motor skill. Human Movement Science, 6(1), 1–16. Scholar
  18. Gabriele, T. E., Hall, C. R., & Lee, T. D. (1989). Cognition in motor learning: Imagery effects on contextual interference. Human Movement Science, 8(3), 227–245. Scholar
  19. Gershman, S. J., & Niv, Y. (2010). Learning latent structure: carving nature at its joints. Current Opinion in Neurobiology. Scholar
  20. Gómez, R. L. (2002). Variability and detection of invariant structure. Psychological Science, 13(5), 431–436. Scholar
  21. Gopher, D. (1993). The skill of attention control: acquisition and execution of attention strategies. Attention and Performance XIV: Synergies in Experimental Psychology, Artificial Intelligence, and Cognitive Neuroscience, 299–322.Google Scholar
  22. Gopher, D., Weil, M., & Siegel, D. (1989). Practice under changing priorities: an approach to the training of complex skills. Acta Psychologica, 71(1–3), 147–177. Scholar
  23. Goschke, T. (2000). Intentional reconfiguration and involuntary persistence in task set switching. In Control of Cognitive Processes (pp. 331–355).
  24. Green, C. S., & Bavelier, D. (2015). Action video game training for cognitive enhancement. Current Opinion in Behavioral Sciences. Scholar
  25. Heitman, R. J., Pugh, S. F., Kovaleski, J. E., Norell, P. M., & Vicory, J. R. (2005). Effects of specific versus variable practice on the retention and transfer of a continuous motor skill. Perceptual and Motor Skills, 100(3_suppl), 1107–1113. Scholar
  26. Kakade, S., & Dayan, P. (2002). Dopamine: generalization and bonuses. Neural Networks. Scholar
  27. Karbach, J., & Kray, J. (2009). How useful is executive control training? Age differences in near and far transfer of task-switching training. Developmental Science, 12(6), 978–990. Scholar
  28. Karbach, J., & Unger, K. (2014). Executive control training from middle childhood to adolescence. Frontiers in Psychology. Scholar
  29. Karbach, J., & Verhaeghen, P. (2014). Making working memory work: a meta-analysis of executive-control and working memory training in older adults. Psychological Science, 25(11), 2027–2037. Scholar
  30. Karbach, J., Mang, S., & Kray, J. (2010). Transfer of task-switching training in older age: the role of verbal processes. Psychology and Aging, 25(3), 677–683. Scholar
  31. Karr, J. E., Areshenkoff, C. N., Rast, P., & Garcia-Barrera, M. A. (2014). An empirical comparison of the therapeutic benefits of physical exercise and cognitive training on the executive functions of older adults: a meta-analysis of controlled trials. Neuropsychology, 28(6), 829–845. Scholar
  32. Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., & Koch, I. (2010). Control and interference in task switching-a review. Psychological Bulletin, 136(5), 849–874. Scholar
  33. Klusmann, V., Evers, A., Schwarzer, R., Schlattmann, P., Reischies, F. M., Heuser, I., & Dimeo, F. C. (2010). Complex mental and physical activity in older women and cognitive performance: a 6-month randomized controlled Trial. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 65A(6), 680–688. Scholar
  34. Koch, I. (2005). Sequential task predictability in task switching. Psychonomic Bulletin and Review, 12(1), 107–112. Scholar
  35. Kramer, A. F., Hahn, S., & Gopher, D. (1999). Task coordination and aging: Explorations of executive control processes in the task switching paradigm. Acta Psychologica, 101(2–3), 339–378.CrossRefPubMedGoogle Scholar
  36. Kramer, A. F., Larish, J. F., & Strayer, D. L. (1995). Training for attentional control in dual task settings: a comparison of young and old adults. Journal of Experimental Psychology: Applied, 1(1), 50–76. Scholar
  37. Kray, J., & Fehér, B. (2017). Age differences in the transfer and maintenance of practice-induced improvements in task switching: the impact of working-memory and inhibition demands. Frontiers in Psychology, 8(MAR).
  38. Kray, J., Karbach, J., Haenig, S., & Freitag, C. (2011). Can task-switching training enhance executive control functioning in children with attention deficit/-hyperactivity disorder? Frontiers in Human Neuroscience, 5(January), 180. Scholar
  39. Lampit, A., Hallock, H., & Valenzuela, M. (2014). Computerized cognitive training in cognitively healthy older adults: a systematic review and meta-analysis of effect modifiers. PLoS Medicine, 11(11) (pagination), ate of Pubaton: 2014.
  40. Larish, J., Kramer, A., DeAntona, J., & Strayer, D. (1993). Aging and dual-task training. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 37(2), 162–166. Scholar
  41. Lee, T. D., & Magill, R. A. (1983). The locus of contextual interference in motor-skill acquisition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 9(4), 730–746. Scholar
  42. Lin, C.-H. J., Wu, A. D., Udompholkul, P., & Knowlton, B. J. (2010). Contextual interference effects in sequence learning for young and older adults. Psychology and Aging, 25(4), 929–939. Scholar
  43. Lustig, C., Shah, P., Seidler, R., & Reuter-Lorenz, P. A. (2009). Aging, training, and the brain: A review and future directions. Neuropsychology Review. Scholar
  44. Mayr, U., & Kliegl, R. (2000). Task-set switching and long-term memory retrieval. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(5), 1124–1140. CrossRefPubMedGoogle Scholar
  45. Melby-Lervåg, M., & Hulme, C.. . (2014) and Karbach (2016). There is no convincing evidence that working memory training is effective: A reply to Au et al. and Verhaeghen (2014). Psychonomic Bulletin and Review, 23(1), 324–330. Scholar
  46. Mery, F., & Kawecki, T. J. (2004). The effect of learning on experimental evolution of resource preference in Drosophila melanogaster. Evolution, 58(4), 757–767. Scholar
  47. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167–202. Scholar
  48. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cognitive Psychology, 41(1), 49–100. Scholar
  49. Monsell, S., Sumner, P., & Waters, H. (2003). Task-set reconfiguration with predictable and unpredictable task switches. Memory & Cognition, 31(3), 327–342. Scholar
  50. Morrison, A. B., & Chein, J. M. (2011). Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychonomic Bulletin & Review, 18(1), 46–60. Scholar
  51. Peng, P., & Miller, A. C. (2016). Does attention training work? A selective meta-analysis to explore the effects of attention training and moderators. Learning and Individual Differences, 45, 77–87. Scholar
  52. Pereg, M., Shahar, N., & Meiran, N. (2013). Task switching training effects are mediated by working-memory management. Intelligence, 41(5), 467–478. Scholar
  53. Rueda, M. R., Cómbita, L. M., & Pozuelos, J. P. (2016). Childhood and adolescence BT -cognitive training: an overview of features and applications. In T. Strobach & J. Karbach (Eds.) (pp. pp. 33–44). Cham: Springer International Publishing. Scholar
  54. Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice: common principles in three paradigms suggest new concepts for training. Psychological Science, 3(4), 207–217. Scholar
  55. Seitz, A. R. (2017). Generalizable learning: practice makes perfect—but at what? Current Biology. Scholar
  56. Sekiya, H., Magill, R. A., Sidaway, B., & Anderson, D. I. (1994). The contextual interference effect for skill variations from the same and different generalized motor programs. Research Quarterly for Exercise and Sport, 65(4), 330–338. Scholar
  57. Shea, C. H., Kohl, R., & Indermill, C. (1990). Contextual interference: Contributions of practice. Acta Psychologica, 73(2), 145–157. Scholar
  58. Shea, J. B., & Morgan, R. L. (1979). Contextual interference effects on the acquisition, retention, and transfer of a motor skill. Journal of Experimental Psychology: Human Learning & Memory, 5(2), 179–187. Scholar
  59. Shea, J. B., & Zimny, S. T. (1983). Memory and control of action. Advances in Psychology, 12, 345–366. Scholar
  60. Simon, D. A. (2007). Contextual interference effects with two tasks. Perceptual and Motor Skills, 105(1), 177–183. Scholar
  61. Simon, D. A., & Bjork, R. A. (2001). Metacognition in motor learning. Journal of Experimental Psychology: Learning Memory and Cognition, 27(4), 907–912. Scholar
  62. Smith, P. J. K. (2002). Task duration in contextual interference. Perceptual and Motor Skills, 95(3_suppl), 1155–1162. Scholar
  63. Sohn, M.-H., & Carlson, R. A. (2000). Effects of repetition and foreknowledge in task-set reconfiguration. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(6), 1445–1460. Scholar
  64. Soveri, A., Antfolk, J., Karlsson, L., Salo, B., & Laine, M. (2017). Working memory training revisited: A multi-level meta-analysis of n-back training studies. Psychonomic Bulletin and Review, 24(4), 1077–1096. Scholar
  65. Strobach, T., Liepelt, R., Schubert, T., & Kiesel, A. (2012). Task switching: Effects of practice on switch and mixing costs. Psychological Research Psychologische Forschung, 76(1), 74–83. Scholar
  66. Vandierendonck, A., Liefooghe, B., & Verbruggen, F. (2010). Task Switching: Interplay of Reconfiguration and Interference Control. Psychological Bulletin, 136(4), 601–626. Scholar
  67. Wulf, G., & Lee, T. D. (1993). Contextual interference in movements of the same class: Differential effects on program and parameter learning. Journal of Motor Behavior, 25(4), 254–263. Scholar
  68. Wulf, G., & Schmidt, R. A. (1988). Variability in practice: Facilitation in retention and transfer through schema formation or context effects? Journal of Motor Behavior, 20(2), 133–149. Scholar
  69. Zinke, K., Einert, M., Pfennig, L., & Kliegel, M. (2012). Plasticity of executive control through task switching training in adolescents. Frontiers in Human Neuroscience, 6. Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Katrina Sabah
    • 1
    Email author
  • Thomas Dolk
    • 1
  • Nachshon Meiran
    • 2
  • Gesine Dreisbach
    • 1
  1. 1.Department of PsychologyUniversity of RegensburgRegensburgGermany
  2. 2.Department of PsychologyBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations