Advertisement

Psychological Research

, Volume 83, Issue 5, pp 907–923 | Cite as

The implicit learning of metrical and non-metrical rhythms in blind and sighted adults

  • Claudia Carrara-AugustenborgEmail author
  • Benjamin G. Schultz
Original Article

Abstract

Forming temporal expectancies plays a crucial role in our survival as it allows us to identify the occurrence of temporal deviants that might signal potential dangers. The dynamic attending theory suggests that temporal expectancies are formed more readily for rhythms that imply a beat (i.e., metrical rhythms) compared to those that do not (i.e., nonmetrical rhythms). Moreover, metrical frameworks can be used to detect temporal deviants. Although several studies have demonstrated that congenital or early blindness correlates with modality-specific neural changes that reflect compensatory mechanisms, few have examined whether blind individuals show a learning advantage for auditory rhythms and whether learning can occur unintentionally and without awareness, that is, implicitly. We compared blind to sighted controls in their ability to implicitly learn metrical and nonmetrical auditory rhythms. We reasoned that the loss of sight in blindness might lead to improved sensitivity to rhythms and predicted that the blind learn rhythms more readily than the sighted. We further hypothesized that metrical rhythms are learned more readily than nonmetrical rhythms. Results partially confirmed our predictions; the blind group learned nonmetrical rhythms more readily than the sighted group but the blind group learned metrical rhythms less readily than the sighted group. Only the sighted group learned metrical rhythms more readily than nonmetrical rhythms. The blind group demonstrated awareness of the nonmetrical rhythms while learning was implicit for all other conditions. Findings suggest that improved deviant-sensitivity might have provided the blind group a learning advantage for nonmetrical rhythms. Future research could explore the plastic changes that affect deviance-detection and stimulus-specific adaptation in blindness.

Notes

Acknowledgements

The first author (CCA) was supported by the Danish Council for Independent Research (DFF-4089-00178). CCA thanks Prof. Maurice Ptito for his useful suggestions on the manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare that no potential conflicts of interest pertain to this submission.

Human and animal rights statement

The present study did not involve non-human animals. The procedures performed in this study involving human participants were in accordance with the ethical standards of the Danish national research committee and with the 1964 Helsinki declaration and its later amendments.

Informed consent

Informed consent was signed by all participants prior to the experiments. The manuscript does not contain clinical studies or patient data.

References

  1. Ayala, Y. A., & Malmierca, M. S. (2013). Stimulus-specific adaptation and deviance detection in the inferior colliculus. Frontiers in Neural Circuits, 6, 89.Google Scholar
  2. Ayala, Y. A., Pérez-González, D., & Malmierca, M. S. (2016). Stimulus-specific adaptation in the inferior colliculus: The role of excitatory, inhibitory and modulatory inputs. Biological Psychology, 116, 10–22.CrossRefGoogle Scholar
  3. Baars, B. J. (1988). A cognitive theory of consciousness. Cambridge: Cambridge University Press.Google Scholar
  4. Baars, B. J. (2005). Global workspace theory of consciousness: Toward a cognitive neuroscience of human experience. Progress in Brain Research, 150, 45–53.CrossRefGoogle Scholar
  5. Baars, B. J., & Franklin, S. (2007). An architectural model of conscious and unconscious brain functions: Global workspace theory and IDA. Neural Networks, 20, 955–961.CrossRefGoogle Scholar
  6. Bargh, J. A., & Morsella, E. (2008). The unconscious mind. Perspectives on Psychological Science, 3, 73–79.CrossRefGoogle Scholar
  7. Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68, 255–278.CrossRefGoogle Scholar
  8. Beaulieu-Lefebvre, M., Schneider, F. C., Kupers, R., & Ptito, M. (2011). Odor perception and odor awareness in congenital blindness. Brain Research Bulletin, 84, 206–209.CrossRefGoogle Scholar
  9. Bell, E. C., & Mino, N. M. (2013). Blind and visually impaired adult rehabilitation and employment survey: Final results. Journal of Blindness Innovation & Research, 3, 1–35.Google Scholar
  10. Boas, L. V., Muniz, L., Neto, S. D. S. C., & Gouveia, M. D. C. L. (2011). Auditory processing performance in blind people. Brazilian Journal of Otorhinolaryngology, 77, 504–509.CrossRefGoogle Scholar
  11. Burton, H., Agato, A., & Sinclair, R. J. (2012). Repetition learning of vibrotactile temporal sequences: An fMRI study in blind and sighted individuals. Brain Research, 1433, 69–79.CrossRefGoogle Scholar
  12. Byrne, R. W., & Salter, E. (1983). Distances and directions in the cognitive maps of the blind. Canadian Journal of Psychology/Revue canadienne de psychologie, 37, 293.CrossRefGoogle Scholar
  13. Cacciaglia, R., Escera, C., Slabu, L., Grimm, S., Sanjuán, A., Ventura-Campos, N., & Ávila, C. (2015). Involvement of the human midbrain and thalamus in auditory deviance detection. Neuropsychologia, 68, 51–58.CrossRefGoogle Scholar
  14. Carrara-Augustenborg C. (2013). From objective informational broadcast to subjective perceptual awareness: The development of a comprehensive model of human consciousness. Ph.D Dissertation ISBN 978-87-7611-591-3.Google Scholar
  15. Carrara-Augustenborg, C., & Pereira, A., Jr. (2012). Brain endogenous feedback and degrees of consciousness. In A. E. Cavanna & A. Novi (Eds.), Consciousness: States, mechanisms and disorders. Hauppauge: Nova Science.Google Scholar
  16. Cirelli, L. K., Einarson, K. M., & Trainor, L. J. (2014). Interpersonal synchrony increases prosocial behavior in infants. Developmental Science, 17, 1003–1011.CrossRefGoogle Scholar
  17. Cohen, J., MacWhinney, B., Flatt, M., & Provost, J. (1993). PsyScope. Behavior Research Methods, Instruments, & Computers, 25, 257–271.CrossRefGoogle Scholar
  18. Collignon, O., Voss, P., Lassonde, M., & Lepore, F. (2009). Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects. Experimental Brain Research, 192, 343.CrossRefGoogle Scholar
  19. Cornella, M., Leung, S., Grimm, S., & Escera, C. (2012). Detection of simple and pattern regularity violations occurs at different levels of the auditory hierarchy. PLoS One, 7, e43604.CrossRefGoogle Scholar
  20. Custers, R., & Aarts, H. (2010). The unconscious will: How the pursuit of goals operates outside of conscious awareness. Science, 329, 47–50.CrossRefGoogle Scholar
  21. Denison, R. N., Sheynin, J., & Silver, M. A. (2016). Perceptual suppression of predicted natural images. Journal of Vision, 16, 6.CrossRefGoogle Scholar
  22. Di Luca, M., Ernst, M. O., & Backus, B. T. (2010). Learning to use an invisible visual signal for perception. Current Biology, 20, 1860–1863. doi: 10.1016/j.cub.2010.09.047.CrossRefGoogle Scholar
  23. Duque, D., Malmierca, M. S., & Caspary, D. M. (2014). Modulation of stimulus-specific adaptation by GABAA receptor activation or blockade in the medial geniculate body of the anaesthetized rat. The Journal of physiology, 592, 729–743.CrossRefGoogle Scholar
  24. Duque, D., Pérez-González, D., Ayala, Y. A., Palmer, A. R., & Malmierca, M. S. (2012). Topographic distribution, frequency, and intensity dependence of stimulus-specific adaptation in the inferior colliculus of the rat. Journal of Neuroscience, 32, 17762–17774.CrossRefGoogle Scholar
  25. Escera, C., & Malmierca, M. S. (2014). The auditory novelty system: An attempt to integrate human and animal research. Psychophysiology, 51, 111–123.CrossRefGoogle Scholar
  26. Essens, P. J., & Povel, D. J. (1985). Metrical and nonmetrical representations of temporal patterns. Perception & Psychophysics, 37, 1–7.CrossRefGoogle Scholar
  27. Fieger, A., Röder, B., Teder-Sälejärvi, W., Hillyard, S. A., & Neville, H. J. (2006). Auditory spatial tuning in late-onset blindness in humans. Journal of Cognitive Neuroscience, 18, 149–157.CrossRefGoogle Scholar
  28. Forster, S., & Lavie, N. (2009). Harnessing the wandering mind: The role of perceptual load. Cognition, 111, 345–355.CrossRefGoogle Scholar
  29. Fozard, J. L., Vercruyssen, M., Reynolds, S. L., Hancock, P. A., & Quilter, R. E. (1994). Age differences and changes in reaction time: The Baltimore longitudinal study of aging. Journal of Gerontology, 49, P179–P189.CrossRefGoogle Scholar
  30. Fu, Q., Dienes, Z., & Fu, X. (2010). Can unconscious knowledge allow control in sequence learning? Consciousness and Cognition, 19, 462–474.CrossRefGoogle Scholar
  31. Grossmann, T., & Friederici, A. D. (2012). When during development do our brains get tuned to the human voice? Social Neuroscience, 7, 369–372.CrossRefGoogle Scholar
  32. Guo, X., Jiang, S., Wang, H., Zhu, L., Tang, J., Dienes, Z., & Yang, Z. (2013). Unconsciously learning task-irrelevant perceptual sequences. Consciousness and Cognition, 22, 203–211.CrossRefGoogle Scholar
  33. Haber, L., Haber, R. N., Pennigroth, S., Novak, K., & Radgowski, H. (1993). Comparison of nine methods of indicating the direction of objects: Data from blind subjects. Perception, 22, 35–47.CrossRefGoogle Scholar
  34. Hamilton, R. H., Pascual-Leone, A., & Schlaug, G. (2004). Absolute pitch in blind musicians. NeuroReport, 15, 803–806.CrossRefGoogle Scholar
  35. Hannon, E. E., & Trehub, S. E. (2005). Tuning into musical rhythms: Infants learn more readily than adults. Proceedings of the National academy of Sciences of the United States of America, 102, 12639–12643.CrossRefGoogle Scholar
  36. Hohwy, J., Roepstorff, A., & Friston, K. (2008). Predictive coding explains binocular rivalry: An epistemological review. Cognition, 108, 687–701.CrossRefGoogle Scholar
  37. Homae, F., Watanabe, H., Nakano, T., Asakawa, K., & Taga, G. (2006). The right hemisphere of sleeping infant perceives sentential prosody. Neuroscience Research, 54, 276–280.CrossRefGoogle Scholar
  38. Horstmann, G. (2002). Evidence for attentional capture by a surprising color singleton in visual search. Psychological Science, 13, 499–505.CrossRefGoogle Scholar
  39. Horstmann, G. (2005). Attentional capture by an unannounced color singleton depends on expectation discrepancy. Journal of Experimental Psychology: Human Perception and Performance, 31, 1039.Google Scholar
  40. Horstmann, G. (2006). The time course of intended and unintended allocation of attention. Psychological Research, 70, 13–25.CrossRefGoogle Scholar
  41. Horstmann, G. (2015). The surprise–attention link: A review. Annals of the New York Academy of Sciences, 1339, 106–115.CrossRefGoogle Scholar
  42. Horstmann, G., & Becker, S. I. (2008). Attentional effects of negative faces: Top-down contingent or involuntary? Attention, Perception, & Psychophysics, 70, 1416–1434.CrossRefGoogle Scholar
  43. Horstmann, G., & Herwig, A. (2016). Novelty biases attention and gaze in a surprise trial. Attention, Perception, & Psychophysics, 78, 69–77.CrossRefGoogle Scholar
  44. Hunt, J. M., Smith, M. F., & Kernan, J. B. (1989). Processing effects of expectancy-discrepant persuasive messages. Psychological Reports, 65, 1359–1376.CrossRefGoogle Scholar
  45. Itti, L., & Baldi, P. (2009). Bayesian surprise attracts human attention. Vision Research, 49, 1295–1306.CrossRefGoogle Scholar
  46. Jones, M. R. (2009). Musical time. In S. Hallam, I. Cross, & M. Thaut (Eds.), The handbook of music psychology (pp. 81–92). New York: Oxford University Press.Google Scholar
  47. Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological Review, 96, 459–491.CrossRefGoogle Scholar
  48. Karabanov, A., & Ullén, F. (2008). Implicit and explicit learning of temporal sequences studied with the process dissociation procedure. Journal of Neurophysiology, 100, 733–739.CrossRefGoogle Scholar
  49. Kersten, D., Mamassian, P., & Yuille, A. (2004). Object perception as Bayesian inference. Annual Review of Psychology, 55, 271–304.CrossRefGoogle Scholar
  50. Kupers, R., & Ptito, M. (2014). Compensatory plasticity and cross-modal reorganization following early visual deprivation. Neuroscience and Biobehavioral Reviews, 41, 36–52.CrossRefGoogle Scholar
  51. Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106, 119.CrossRefGoogle Scholar
  52. LeDoux, J. (1996). Emotional networks and motor control: A fearful view. Progress in Brain Research, 107, 437–446.CrossRefGoogle Scholar
  53. Lerdahl, F., & Jackendoff, R. (1981). On the theory of grouping and meter. The Musical Quarterly, 67, 479–506.CrossRefGoogle Scholar
  54. Lerens, E., Araneda, R., Renier, L., & De Volder, A. G. (2014). Improved beat asynchrony detection in early blind individuals. Perception, 43, 1083–1096.CrossRefGoogle Scholar
  55. Malmierca, M. S., Sanchez-Vives, M. V., Escera, C., & Bendixen, A. (2014). Neuronal adaptation, novelty detection and regularity encoding in audition. Frontiers in Systems Neuroscience, 8, 111.Google Scholar
  56. Meeter, M., Myers, C. E., & Gluck, M. A. (2005). Integrating incremental learning and episodic memory models of the hippocampal region. Psychological Review, 112, 560.CrossRefGoogle Scholar
  57. Mills, P. F., van der Steen, M. M., Schultz, B. G., & Keller, P. E. (2015). Individual differences in temporal anticipation and adaptation during sensorimotor synchronization. Timing & Time Perception, 3, 13–31.CrossRefGoogle Scholar
  58. Morey, R. D., Rouder, J. N., & Jamil, T. (2009). BayesFactor: an R package for Bayesian data analysis. R package version 09.10-2. Retrieved from http://bayesfactorpcl.r-forge.r-project.org/rouder. Accessed 21 Apr 2017.
  59. Näätänen, R., Gaillard, A. W., & Mäntysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42, 313–329.CrossRefGoogle Scholar
  60. Paavilainen, P. (2013). The mismatch-negativity (MMN) component of the auditory event-related potential to violations of abstract regularities: A review. International Journal of Psychophysiology, 88, 109–123.CrossRefGoogle Scholar
  61. Parmentier, F. B. P. (2008). Towards a cognitive model of distraction by auditory novelty: The role of involuntary attention capture and semantic processing. Cognition, 109, 345–362.CrossRefGoogle Scholar
  62. Parncutt, R. (1994). A perceptual model of pulse salience and metrical accent in musical rhythms. Music Perception: An Interdisciplinary Journal, 11, 409–464.CrossRefGoogle Scholar
  63. Pascual-Leone, A. (1996). Reorganization of cortical motor outputs in the acquisition of new motor skills. In J. Kinura & H. Shibasaki (Eds.), Recent advances in clinical neurophysiology (pp. 304–308). Amsterdam: Elsevier Science.Google Scholar
  64. Pascual-Leone, A., Cohen, L. G., Brasil-Neto, J. P., Valls-Solé, J., & Hallett, M. (1994). Differentiation of sensorimotor neuronal structures responsible for induction of motor evoked potentials, attenuation in detection of somatosensory stimuli, and induction of sensation of movement by mapping of optimal current directions. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 93, 230–236.CrossRefGoogle Scholar
  65. Pascual-Leone, A., & Hamilton, R. (2001). The metamodal organization of the brain. Progress in Brain Research, 134, 427–445.CrossRefGoogle Scholar
  66. Patel, A. D. (2008). Music, language, and the brain. New York: Oxford University Press, ISBN13: 978-0-19-512375-3, ISBN10: 0-19-512375-1.Google Scholar
  67. Patel, C. R., Redhead, C., Cervi, A. L., & Zhang, H. (2012). Neural sensitivity to novel sounds in the rat’s dorsal cortex of the inferior colliculus as revealed by evoked local field potentials. Hearing Research, 286, 41–54.CrossRefGoogle Scholar
  68. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2015). nlme: linear and nonlinear mixed effects models. R package version 3.1-120. Retrieved from http://CRAN.R-project.org/package=nlme. Accessed 21 Apr 2017.
  69. Ponnath, A., Hoke, K. L., & Farris, H. E. (2013). Stimulus change detection in phasic auditory units in the frog midbrain: Frequency and ear specific adaptation. Journal of Comparative Physiology A, 199, 295–313.CrossRefGoogle Scholar
  70. Povel, D. J., & Essens, P. (1985). Perception of temporal patterns. Music Perception: An Interdisciplinary Journal, 2, 411–440.CrossRefGoogle Scholar
  71. Ptito, M., & Kupers, R. (2005). Cross-modal plasticity in early blindness. Journal of Integrative Neuroscience, 4, 479–488.CrossRefGoogle Scholar
  72. R Core Team. (2013). R: a language and environment for statistical computing (version 3.4.0). R Foundation for Statistical Computing, Vienna, Austria. Retrieved from http://www.R-project.org/. Accessed 21 Apr 2017.
  73. Ranjbar, P., & Stenström, I. (2013). Monitor, a vibrotactile aid for environmental perception: a field evaluation by four people with severe hearing and vision impairment. The Scientific World Journal, 2013, 1–11.Google Scholar
  74. Renier, L., De Volder, A. G., & Rauschecker, J. P. (2014). Cortical plasticity and preserved function in early blindness. Neuroscience and Biobehavioral Reviews, 41, 53–63.CrossRefGoogle Scholar
  75. Röder, B., Krämer, U. M., & Lange, K. (2007). Congenitally blind humans use different stimulus selection strategies in hearing: An ERP study of spatial and temporal attention. Restorative Neurology & Neuroscience, 25, 311–322.Google Scholar
  76. Röder, B., Rösler, F., & Neville, H. J. (1999a). Effects of interstimulus interval on auditory event-related potentials in congenitally blind and normally sighted humans. Neuroscience Letters, 264, 53–56.CrossRefGoogle Scholar
  77. Röder, B., Rösler, F., & Spence, C. (2004). Early vision impairs tactile perception in the blind. Current Biology, 14, 121–124.CrossRefGoogle Scholar
  78. Röder, B., Teder-Sälejärvi, W., Sterr, A., Rösler, F., Hillyard, S. A., & Neville, H. J. (1999b). Improved auditory spatial tuning in blind humans. Nature, 400, 162–166.CrossRefGoogle Scholar
  79. Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16, 752–760.CrossRefGoogle Scholar
  80. Schall, U., Johnston, P., Todd, J., Ward, P. B., & Michie, P. T. (2003). Functional neuroanatomy of auditory mismatch processing: An event-related fMRI study of duration-deviant oddballs. Neuroimage, 20, 729–736.CrossRefGoogle Scholar
  81. Schmack, K., Gomez-Carrillo de Castro, A., Rothkirch, M., Sekutowicz, M., Rössler, H., Haynes, J. D., & Sterzer, P. (2013). Delusions and the role of beliefs in perceptual inference. Journal of Neuroscience, 33, 13701–13712.CrossRefGoogle Scholar
  82. Schomaker, J., & Meeter, M. (2014). Novelty detection is enhanced when attention is otherwise engaged: An event-related potential study. Experimental Brain Research, 232, 995–1011.CrossRefGoogle Scholar
  83. Schomaker, J., Roos, R., & Meeter, M. (2014). Expecting the unexpected: The effects of deviance on novelty processing. Behavioral Neuroscience, 128, 146.CrossRefGoogle Scholar
  84. Schultz, B. G., Stevens, C. J., Keller, P. E., & Tillmann, B. (2013a). The implicit learning of metrical and nonmetrical temporal patterns. The Quarterly Journal of Experimental Psychology, 66, 360–380.CrossRefGoogle Scholar
  85. Schultz, B. G., Stevens, C. J., Keller, P. E., & Tillmann, B. (2013b). A sequence identification measurement model to investigate the implicit learning of metrical temporal patterns. PLoS One, 8, e75163.CrossRefGoogle Scholar
  86. Seriés, P., & Seitz, A. R. (2013). Learning what to expect (in visual perception). Frontiers in Human Neuroscience, 7, 668.CrossRefGoogle Scholar
  87. Shanks, D. R. (2005). Implicit learning. In K. Lamberts & R. Goldstone (Eds.), Handbook of cognition (pp. 202–220). London: Sage.Google Scholar
  88. Slimani, H., Danti, S., Ricciardi, E., Pietrini, P., Ptito, M., & Kupers, R. (2013). Hypersensitivity to pain in congenital blindness. Pain, 154, 1973–1978.CrossRefGoogle Scholar
  89. Stevens, A. A., & Weaver, K. (2005). Auditory perceptual consolidation in early-onset blindness. Neuropsychologia, 43, 1901–1910.CrossRefGoogle Scholar
  90. Taaseh, N., Yaron, A., & Nelken, I. (2011). Stimulus-specific adaptation and deviance detection in the rat auditory cortex. PLoS One, 6, e23369.CrossRefGoogle Scholar
  91. Ulanovsky, N., Las, L., & Nelken, I. (2003). Processing of low-probability sounds by cortical neurons. Nature Neuroscience, 6, 391–398.CrossRefGoogle Scholar
  92. Van der Lubbe, R. H., Van Mierlo, C. M., & Postma, A. (2010). The involvement of occipital cortex in the early blind in auditory and tactile duration discrimination tasks. Journal of Cognitive Neuroscience, 22, 1541–1556.CrossRefGoogle Scholar
  93. Von Melchner, L., Pallas, S. L., & Sur, M. (2000). Visual behaviour mediated by retinal projections directed to the auditory pathway. Nature, 404, 871–876.CrossRefGoogle Scholar
  94. Wan, C. Y., Wood, A. G., Reutens, D. C., & Wilson, S. J. (2010). Early but not late-blindness leads to enhanced auditory perception. Neuropsychologia, 48, 344–348.CrossRefGoogle Scholar
  95. Winkler, I., Denham, S. L., & Nelken, I. (2009). Modelling the auditory scene: Predictive regularity representations and perceptual objects. Trends in Cognitive Sciences, 13, 532–540.CrossRefGoogle Scholar
  96. Zhao, L., Liu, Y., Shen, L., Feng, L., & Hong, B. (2011). Stimulus-specific adaptation and its dynamics in the inferior colliculus of rat. Neuroscience, 181, 163–174.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Brain Research and Integrative Neuroscience Laboratory, Department of Neuroscience and PharmacologyUniversity of CopenhagenCopenhagenDenmark
  2. 2.Basic and Applied Neurodynamics Laboratory, Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands

Personalised recommendations