Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

The dynamic-stimulus advantage of visual symmetry perception

Abstract

It has been speculated that visual symmetry perception from dynamic stimuli involves mechanisms different from those for static stimuli. However, previous studies found no evidence that dynamic stimuli lead to active temporal processing and improve symmetry detection. In this study, four psychophysical experiments investigated temporal processing in symmetry perception using both dynamic and static stimulus presentations of dot patterns. In Experiment 1, rapid successive presentations of symmetric patterns (e.g., 16 patterns per 853 ms) produced more accurate discrimination of orientations of symmetry axes than static stimuli (single pattern presented through 853 ms). In Experiments 2–4, we confirmed that the dynamic-stimulus advantage depended upon presentation of a large number of unique patterns within a brief period (853 ms) in the dynamic conditions. Evidently, human vision takes advantage of temporal processing for symmetry perception from dynamic stimuli.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Adelson, E. H., & Movshon, J. A. (1982). Phenomenal coherence of moving gratings. Nature, 300, 523–525.

  2. Alais, D., van der Smagt, M. J., van den Berg, A. V., & van de Grind, W. A. (1998). Local and global factors affecting the coherent motion of gratings presented in multiple apertures. Vision Research, 38, 1581–1591.

  3. Barlow, H. B., & Reeves, B. C. (1979). The versatility and absolute efficiency of detecting mirror symmetry in random dot displays. Vision Research, 19, 783–793.

  4. Bartley, S. H. (1938). Subjective brightness in relation to flash rate and the light-dark ration. Journal of Experimental Psychology, 23, 313–319.

  5. Brooks, A., van der Zwan, R., & Holden, J. (2003). An illusion of coherent global motion arising from single brief presentations of stationary stimulus. Vision Research, 43, 2387–2392.

  6. Burr, D., & Ross, J. (2006). The effects of opposite-polarity dipoles on the detection of Glass patterns. Vision Research, 46, 1139–1144.

  7. Coltheart, M. (1980). Iconic memory and visible persistence. Perception & Psychophysics, 27, 183–228.

  8. Glass, L. (1969). Moiré effect from random dots. Nature, 223, 578–580.

  9. Glass, L., & Pérez, R. (1973). Perception of random dot interference patterns. Nature, 246, 360–362.

  10. Hogben, J. H., & DiLollo, V. (1974). Perceptual integration and perceptual segregation of brief visual stimuli. Vision Research, 14, 1059–1069.

  11. Hogben, J. H., Julesz, B., & Ross, J. (1976). Short-term memory for symmetry. Vision Research, 16, 861–866.

  12. Huang, L., & Pashler, H. (2002). Symmetry detection and visual attention: A “binary-map” hypothesis. Vision Research, 42, 1421–1430.

  13. Jenkins, B. (1982). Redundancy in the perception of bilateral symmetry in dot textures. Perception & Psychophysics, 32, 171–177.

  14. Jenkins, B. (1983). Component processes in the detection of bilaterally symmetric dot textures. Perception & Psychophysics, 34, 433–440.

  15. Julesz, B. (1971). Foundations of cyclopean perception. Chicago: University of Chicago Press.

  16. Julesz, B. (1981). Figure and ground perception in briefly presented isodipole textures. In M. Kubovy, & J. Pomenrantz (Eds.), Perceptual organization (pp. 27–54). Hillsdale: Erlbaum.

  17. Kanwisher, N. (1987). Repetition blindness: Type recognition without token individuation. Cognition, 27, 117–143.

  18. Kanwisher, N. (2003). The ventral visual object pathway in humans: Evidence from fMRI. In L. M. Chalupa, & J. S. Werner (Eds.), The visual neurosciences (pp. 1179–1189). Cambridge: The MIT Press.

  19. Katz, M. S. (1964). Brief flash brightness. Vision Research, 4, 361–373.

  20. Maki, W. S., Frigen, K., & Paulson, K. (1997). Associative priming by targets and distractors during rapid serial visual presentation: Does word meaning survive the attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 23, 1014–1034.

  21. Malach, R., Reppas, J. B., Benson, R. R., Kwong, K. K., Jiang, H., Kennedy, W. A., et al. (1995). Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proceedings of the National Academy of Sciences of the USA, 92, 8135–8139.

  22. Morris, A. L., & Harris, C. L. (2004). Repetition blindness: Out of sight or out of mind? Journal of Experimental Psychology: Human Perception and Performance, 30, 913–922.

  23. Niimi, R., Watanabe, K., & Yokosawa, K. (2005). The role of visible persistence for perception of visual bilateral symmetry. Japanese Psychological Research, 47, 262–270.

  24. Olivers, C. N. L., Chater, N., & Watson, D. G. (2004). Holography does not account for goodness: A clitique of van der Helm and Leeuwenverg (1996). Psychological Review, 111, 242–260.

  25. Or, C. C.-F., Khuu, S. K., & Hayes, A. (2007). The role of luminance contrast in the detection of global structure in static and dynamic, same- and opposite-polarity, Glass patterns. Vision Research, 47, 253–259.

  26. Palmer, S. E., & Hemenway, K. (1978). Orientation and symmetry: Effects of multiple, rotational, and near symmetry. Journal of Experimental Psychology: Human Perception and Performance, 4, 691–702.

  27. Rainville, S. J. M., & Kingdom, F. A. A. (2002). Scale invariance is driven by stimulus density. Vision Research, 42, 351–367.

  28. Ross, J., Badcock, D. R., & Hayes, A. (2000). Coherent global motion in the absence of coherent velocity signals. Current Biology, 10, 679–682.

  29. Sasaki, Y., Vanduffel, W., Knutsen, T., Tyler, C., & Tootell, R. (2005). Symmetry activates extrastriate visual cortex in human and nonhuman primates. Proceedings of the National Academy of Sciences of the USA, 102, 3159–3163.

  30. Tyler, C. W. (Ed.). (1996). Human symmetry perception and its computational analysis. Utrecht: VSP.

  31. Tyler, C. W. (1999). Human symmetry detection exhibits reverse eccentricity scaling. Visual Neuroscience, 16, 919–922.

  32. Tyler, C. W. (2001). The symmetry magnification function varies with detection task. Journal of Vision, 1, 137–144.

  33. Tyler, C. W., Baseler, H. A., Kontsevich, L. L., Likova, L. T., Wade, A. R., & Wandell, B. A. (2005). Predominantly extra-retinotopic cortical response to pattern symmetry. Neuroimage, 24, 306–314.

  34. Tyler, C. W., Hardage, L., & Miller, R. T. (1995). Multiple mechanisms for the detection of mirror symmetry. Spatial Vision, 9, 79–100.

  35. van der Helm, P. A., & Leeuwenberg, E. L. J. (1996). Goodness of visual regularities: A nonstransformational approach. Psychological review, 103, 429–456.

  36. van der Helm, P. A., & Leeuwenberg, E. L. J. (2004) Holographic goodness is not that bad: Reply to Olivers, Chater, and Watson (2004). Psychological Review, 111, 261–273.

  37. van der Vloed, G., Casthó, Á, & van der Helm, P. A. (2007). Effects of asynchrony on symmetry perception. Psychological Research, 71, 170–177.

  38. Wagemans, J., Van Gool, L., & d’Ydewalle, G. (1991). Detection of symmetry in tachistoschopically presented dot patterns: Effects of multiple axes and skewing. Perception & Psychophysics, 50, 413–427.

  39. Wagemans, J., Van Gool, L., Swinnen, V., & Van Horebeek, J. (1993). Higher-order structure in regularity detection. Vision Research, 33, 1067–1088.

  40. Wenderoth, P. (1996). The effects of dot pattern parameters and constraints on the relative salience of vertical bilateral symmetry. Vision Research, 36, 2311–2320.

  41. Williams, D. W., & Sekuler, R. (1984). Coherent global motion percepts from stochastic local motions. Vision Research, 24, 55–62.

Download references

Acknowledgments

Supported by Grants-in-Aid for Scientific Research, the Japan Society for the Promotion of Science (awarded to R. N. and K. Y., respectively), and by Shimojo Implicit Brain Function Project, ERATO, Japan Science and Technology Agency (to K. W.).

Author information

Correspondence to Kazuhiko Yokosawa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Niimi, R., Watanabe, K. & Yokosawa, K. The dynamic-stimulus advantage of visual symmetry perception. Psychological Research 72, 567–579 (2008). https://doi.org/10.1007/s00426-008-0133-y

Download citation

Keywords

  • Pattern Frequency
  • Rapid Serial Visual Presentation
  • Successive Presentation
  • Individual Pattern
  • Symmetric Pattern