Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Motion misperception caused by feedback connections: A neural model simulating the Fröhlich effect

  • 73 Accesses

  • 3 Citations

Abstract

When asked to indicate the starting position of a fast moving stimulus, observers do not indicate the actual starting position but a later position on the motion trajectory. This perceptual illusion is known as the “Fröhlich effect”. We present a neural model aimed at simulating this phenomenon based on feedforward and feedback connections. The basic simulation mechanisms seem to be compatible with the attentional and the motion extrapolation account. A comparison between simulated and empirical results showed that the model is capable of generating the same main effects as those found in the empirical data.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    RFsize (degrees)=0.57·eccentricity0.69 (after Rosa et al., 1997).

  2. 2.
    $$o_{i}(t) = \frac{1}{{1 + \hbox{e}^{ - (\hbox{net}_{i}(t) + o_{i}(t - 1)/2) - \theta)/\tau } }}$$

    where net i (t) is the weighted sum of inputs and o i (t) is the output of neuron i at time t (after Skapura, 1996, but the former output is added to the input value).

  3. 3.

    For a layer with neurons 1, ..., N, and o i min being the minimal output of neuron i, the center of gravity of its activation is located at position c(t) as computed by the following equation:

    $$c(t) = \frac{{\sum\limits_{i = 1}^N {i \left(o_{i}(t) - o_{i}^{\rm min} \right)} }}{{\sum\limits_{i = 1}^N {\left(o_{i}(t) - o_{i}^{\rm min}\right)} }}.$$
  4. 4.

    This led to virtual retrace rates of 21.85 and 121.55 Hz. The virtual retrace rates do not match those of Müsseler and Aschersleben (1998) because the subject–screen distance, the stimulus size, and the way to generate the motion of the stimulus differed between the simulation and the actual experiments.

References

  1. Baldo, M. V. C., & Caticha, N. (2004). Compuational neurobiology of visual illusions: The flash-lag and Fröhlich effects emerge from simple neural networks. Perception, 33, S32.

  2. Baldo, M. V. C., Kihara, A. H., Namba, J., & Klein, S. A. (2002). Evidence for an attentional component of the perceptual misalignment between moving and flashing stimuli. Perception, 31, 17–30.

  3. Carbone, E. (2001). Die Rolle von Aufmerksamkeitsprozessen bei der Fehlwahrnehmung dynamischer Reize [The role of attentional processes in the misperception of dynamic stimuli]. Unpublished dissertation, Bielefeld University, Germany.

  4. Di Lollo, V., Enns, J. T., & Rensink, R. A. (2000). Competition for consciousness among visual events: The psychophysics of reentrant visual processes. Journal of Experimental Psychology: General, 129, 481–507.

  5. Driver, J., & Spence, C. (2000). Multisensory perception: Beyond modularity and convergence. Current Biology, 10, 731–735.

  6. Fröhlich, F. W. (1921). Untersuchungen über periodische Nachbilder [Studies on periodic afterimages]. Zeitschrift für Sinnesphysiologie, 52, 60–88.

  7. Fröhlich, F. W. (1929). Die Empfindungszeit [The sensation time]. Jena: Fischer.

  8. Lamme, V. A. F., & Roelfsema, P. R. (2000) The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences, 23, 571–579.

  9. Luck, S. J. (1998). Neurophysiology of selective attention. In H. Pashler (Ed.), Attention (pp. 257–295). Hove: Psychology Press.

  10. Martinez, A., Anllo-Vento, L., Sereno, M. I., Frank, L. R., Buxton, R. B., Dubowitz, D. J. et al. (1999). Involvement of striate and extrastriate visual cortical areas in spatial attention. Nature Neuroscience, 2, 364–369.

  11. Mateeff, S., & Hohnsbein, J. (1988). Perceptual latencies are shorter for motion towards the fovea than for motion away. Vision Research, 28, 711–719.

  12. Mateeff, S., Yakimoff, N., Hohnsbein, J., Ehrenstein, W. H., Bohdanecky, Z., & Radil, T. (1991). Selective directional sensitivity in visual motion perception. Vision Research, 31, 131–138.

  13. Müsseler, J., & Aschersleben, G. (1998). Localizing the first position of a moving stimulus: The Fröhlich effect and an attention-shifting explanation. Perception & Psychophysics, 60, 683–695.

  14. Müsseler, J., & Neumann, O. (1992). Apparent distance reduction with moving stimuli (Tandem Effect): Evidence for an attention-shifting model. Psychological Research, 54, 246–266.

  15. Müsseler, J., Stork, S., & Kerzel, D. (2002). Comparing mislocalizations with moving stimuli: The Fröhlich effect, the flash-lag effect and representational momentum. Visual Cognition, 9, 120–138.

  16. Neumann, O. (1982). Experimente zum Fehrer-Raab-Effekt und das ‘Wetterwart’-Modell der visuellen Maskierung [Experiments on the Fehrer-Raab effect and the ‘Weather-Station’ model of visual masking]. Report No. 24/1982, Department of Psychology at the Ruhr-University Bochum, Cognitive Psychology Unit.

  17. Neumann, O., & Müsseler, J. (1990). Visuelles Fokussieren: Das Wetterwart-Modell und einige seiner Anwendungen [Visual focussing: The Weather-Station model and some of its applications]. In C. Meinecke & L. Kehrer (Eds.), Bielefelder Beiträge zur Kognitionspsychologie (pp.77–108). Göttingen: Hogrefe.

  18. Nijhawan, R. (1994). Motion extrapolation in catching. Nature, 370, 256–257.

  19. Nijhawan, R. (1997). Visual decomposition of colour through motion extrapolation. Nature, 386, 66–69.

  20. Nijhawan, R. (2002). Neural delays, visual motion and the flash-lag effect. Trends in Cognitive Sciences, 6, 387–393.

  21. Pascual-Leone, A., & Walsh, V. (2001). Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science, 292, 510–512.

  22. Purushothaman, G., Patel, S. S., Bedell, H. E., & Ogmen, H. (1998). Moving ahead through differential visual latency. Nature, 396, 424.

  23. Rosa, M. G. P., Casagrande, V. A., Preuss, T., & Kaas, J. H. (1997). Visual field representation in striate and prestriate cortices of a prosimian Primate (galago garnetti). Journal of Neurophysiology, 77, 3193–3217.

  24. Scharlau, I., & Neumann, O. (2003). Perceptual latency priming by masked and unmasked stimuli: Evidence for an attentional explanation. Psychological Research, 67, 184–197.

  25. Skapura, D. M. (1996). Building neural networks. New York: Association for Computing Machinery (ACM) Press.

Download references

Acknowledgements

This work was supported by a fellowship within the postdoc program of the German Academic Exchange Service (DAAD) to Elena Carbone and Grant AN 393/1–1 by Deutsche Forschungsgemeinschaft to Ulrich Ansorge, Holk Cruse, and Odmar Neumann. We thank Ulrich Ansorge, Mark Elliott, Ingrid Scharlau, and one anonymous reviewer for their comments on an earlier draft.

Author information

Correspondence to Elena Carbone.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Carbone, E., Pomplun, M. Motion misperception caused by feedback connections: A neural model simulating the Fröhlich effect. Psychological Research 71, 709–715 (2007). https://doi.org/10.1007/s00426-006-0060-8

Download citation

Keywords

  • Motion Direction
  • Transmission Delay
  • Neural Model
  • Stimulus Location
  • Attention Shift