Up-regulation of microRNA targets correlates with symptom severity in Citrus sinensis plants infected with two different isolates of citrus psorosis virus
Abstract
Main conclusion
miRNA targets from Citrus sinensis are predicted and validated using degradome data. They show an up-regulation upon infection with CPsV, with a positive correlation between target expression and symptom severity.
Abstract
Sweet orange (Citrus sinensis) may suffer from disease symptoms induced by virus infections, thus resulting in drastic economic losses. Infection of sweet orange plants with two isolates of citrus psorosis virus (CPsV), expressing different symptomatologies, alters the accumulation of a set of endogenous microRNAs (miRNAs). Here, we predicted ten putative targets from four down-regulated miRNAs: three belonging to the CCAAT-binding transcription factor family (CBFAs); an Ethylene-responsive transcription factor (RAP2-7); an Integrase-type DNA-binding superfamily protein (AP2B); Transport inhibitor response 1 (TIR1); GRR1-like protein 1-related (GRR1); Argonaute 2-related (AGO2), Argonaute 7 (AGO7), and a long non-coding RNA (ncRNA). We validated six of them through analysis of leaf degradome data. Expressions of the validated targets increase in infected samples compared to healthy tissue, showing a more striking up-regulation those samples with higher symptom severity. This study contributes to the understanding of the miRNA-mediated regulation of important transcripts in Citrus sinensis through target validation and shed light in the manner a virus can alter host regulatory mechanisms leading to symptom expression.
Keywords
CPsV Degradome analysis MicroRNAs Sweet orange TargetsAbbreviations
- AGO2
Argonaute 2-related
- AGO7
Argonaute 7
- AP2B
Integrase-type DNA-binding superfamily protein
- CBF
CCAAT-binding transcription factor
- CPsV
Citrus psorosis virus
- GRR1
GRR1-like protein 1-related
- ncRNA
Non-coding RNA
- RAP2-7
Ethylene-responsive transcription factor
- Targets
Targeting specific transcript RNAs
- TIR1
Transport inhibitor response 1
Notes
Acknowledgements
We thank Dr. Carmen Hernández Fort and Dr. Eduardo J. Peña for critical reading of the manuscript. We also thank Romina N. Ramos for help with statistical analysis and A.E. Claudio A. Gómez (Laboratorio de Protección Vegetal y Biotecnología, EEA-Concordia, INTA) for providing Citrus sinensis plants.
Supplementary material
References
- Addo-Quaye C, Miller W, Axtell MJ (2009) CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25(1):130–131. https://doi.org/10.1093/bioinformatics/btn604 CrossRefPubMedGoogle Scholar
- Alam MM, Tanaka T, Nakamura H, Ichikawa H et al (2015) Overexpression of a rice heme activator protein gene (OsHAP2E) confers resistance to pathogens, salinity and drought, and increases photosynthesis and tiller number. Plant Biotechnol J 13:85–96. https://doi.org/10.1111/pbi.12239 CrossRefPubMedGoogle Scholar
- Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221. https://doi.org/10.1016/j.cell.2005.04.004 CrossRefPubMedGoogle Scholar
- Alvarado VY, Scholthof HB (2011) AGO2: a new argonaute compromising plant virus accumulation. Front Plant Sci 2:112. https://doi.org/10.3389/fpls.2011.00112 CrossRefPubMedGoogle Scholar
- Bahieldin A, Atef A, Edris S, Gadalla NO et al (2016) Ethylene responsive transcription factor ERF109 retards PCD and improves salt tolerance in plant. BMC Plant Biol 16:216. https://doi.org/10.1186/s12870-016-0908-z CrossRefPubMedPubMedCentralGoogle Scholar
- Ballif J, Endo S, Kotani M, MacAdam J, Wu Y (2011) Over-expression of HAP3b enhances primary root elongation in Arabidopsis. Plant Physiol Biochem 49:579–583. https://doi.org/10.1016/j.plaphy.2011.01.013 CrossRefPubMedGoogle Scholar
- Bartel DP (2004) microRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. https://doi.org/10.1016/S0092-8674(04)00045-5 CrossRefPubMedGoogle Scholar
- Bazzini AA, Hopp HE, Beachy RN, Asurmendi S (2007) Infection and coaccumulation of tobacco mosaic virus proteins alter microRNA levels, correlating with symptom and plant development. Proc Natl Acad Sci USA 104:12157–12162. https://doi.org/10.1073/pnas.0705114104 CrossRefPubMedGoogle Scholar
- Boava LP, Cristofani-Yaly M, Mafra VS, Kubo K et al (2011) Global gene expression of Poncirus trifoliata, Citrus sunki and their hybrids under infection of Phytophthora parasitica. BMC Genomics 12:1–13. https://doi.org/10.1186/1471-2164-12-39 CrossRefGoogle Scholar
- Borniego MB, Karlin D, Pena EJ, Robles Luna G, Garcia ML (2016) Bioinformatic and mutational analysis of ophiovirus movement proteins, belonging to the 30 K superfamily. Virology 498:172–180. https://doi.org/10.1016/j.virol.2016.08.027 CrossRefPubMedGoogle Scholar
- Brousse C, Liu Q, Beauclair L, Deremetz A, Axtell MJ, Bouche N (2014) A non-canonical plant microRNA target site. Nucleic Acids Res 42:5270–5279. https://doi.org/10.1093/nar/gku157 CrossRefPubMedPubMedCentralGoogle Scholar
- Cardon GH, Höhmann S, Nettesheim K, Saedler H, Huijser P (1997) Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition. Plant J 12:367–377. https://doi.org/10.1046/j.1365-313X.1997.12020367.x CrossRefPubMedGoogle Scholar
- Cardon G, Höhmann S, Klein J, Nettesheim K, Saedler H, Huijser P (1999) Molecular characterisation of the Arabidopsis SBP-box genes. Gene 237(1):91–104. https://doi.org/10.1016/S0378-1119(99)00308-X CrossRefPubMedGoogle Scholar
- Chen J, Feng J, Liao Q, Chen S, Zhang J, Lang Q et al (2012) Analysis of tomato microRNAs expression profile induced by Cucumovirus and Tobamovirus infections. J Nanosci Nanotechnol 12(1):143–150. https://doi.org/10.1166/jnn.2012.5112 CrossRefPubMedGoogle Scholar
- Chorostecki U, Palatnik JF (2014) comTAR: a web tool for the prediction and characterization of conserved microRNA targets in plants. Bioinformatics 30(14):2066–2067. https://doi.org/10.1093/bioinformatics/btu147 CrossRefPubMedGoogle Scholar
- Cui LG, Shan JX, Shi M, Gao JP, Lin HX (2014) The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J 80(6):1108–1117. https://doi.org/10.1111/tpj.12712 CrossRefPubMedGoogle Scholar
- Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159. https://doi.org/10.1093/nar/gkr319 CrossRefPubMedPubMedCentralGoogle Scholar
- Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the plant immune system from dissection to deployment. Science 341:746–751. https://doi.org/10.1126/science.1236011 CrossRefPubMedGoogle Scholar
- Danós E (1990) La psorosis de los cítricos: la epidemia en curso en Argentina y el desafío de su control. En Revista de Investigaciones Agropecuarias, International Foundation for Science (IFS) e Instituto Nacional de Tecnología Agropecuaria (INTA) edn: pp 265–277Google Scholar
- Dharmasiri N, Dharmasiri S, Weijers D, Lechner E et al (2005) Plant development is regulated by a family of auxin receptor F-box proteins. Dev Cell 9:109–119. https://doi.org/10.1016/j.devcel.2005.05.014 CrossRefPubMedGoogle Scholar
- Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11:539–548. https://doi.org/10.1038/nrg2812 CrossRefPubMedGoogle Scholar
- Du Z, Xiao D, Wu J, Jia D, Yuan Z et al (2011) p2 of rice stripe virus (RSV) interacts with OsSGS3 and is a silencing suppressor. Mol Plant Pathol 12(8):808–814. https://doi.org/10.1111/j.1364-3703.2011.00716.x CrossRefPubMedPubMedCentralGoogle Scholar
- García ML, Derrick KS, Grau O (1993) Citrus psorosis associated virus and citrus ringspot virus belong to a new virus group. In: Moreno P, da Graça JV, Timmer LW (eds) Proc 12th conference intern organization of citrus virologists. IOCV, University of California, Riverside, pp 430–431Google Scholar
- García ML, Bo ED, da Graca JV, Gago-Zachert S et al (2017) ICTV virus taxonomy profile: ophioviridae. J Gen Virol 98:1161–1162. https://doi.org/10.1099/jgv.0.000836 CrossRefPubMedPubMedCentralGoogle Scholar
- Garnsey SM, Timmer LW (1980) Mechanical transmissibility of citrus ringspot virus isolates from Florida, Texas, and California. In: Calavan EC, Garnsey SM, Timmer LW (eds) Proc 8th conference intern organization of citrus virologists. IOCV, Riverside, pp 174–179Google Scholar
- Garnsey SM, Youtsey CO, Bridges GD, Burnett HC (1976) A necrotic ringspot-like virus found in a ‘Star Ruby’ grapefruit tree imported without authorization from Texas. Proc Fla State Hortic Soc 89:63–67Google Scholar
- Gómez CA (2019) Metodologías de diagnóstico de CPsV (psorosis) en cítricos. (3200). https://inta.gob.ar/sites/default/files/inta_concordia_metodologia_de_diagnostico_de_psorosis_en_citricos.pdf. Accessed 20 Nov 2019
- Harvey JJW, Lewsey MG, Patel K, Westwood J et al (2011) An antiviral defense role of AGO2 in plants. PLoS One 6(1):e14639. https://doi.org/10.1371/journal.pone.0014639 CrossRefPubMedPubMedCentralGoogle Scholar
- Hou C, Lee W, Chou H, Chen A, Chou S, Chen H (2016) Global analysis of truncated RNA ends reveals new insights into ribosome stalling in plants. The Plant Cell 28:2398–2416. https://doi.org/10.1105/tpc.16.00295 CrossRefPubMedPubMedCentralGoogle Scholar
- Jagtap S, Shivaprasad PV (2014) Diversity, expression and mRNA targeting abilities of Argonaute-targeting miRNAs among selected vascular plants. BMC Genomics 15(1):1049. https://doi.org/10.1186/1471-2164-15-1049 CrossRefPubMedPubMedCentralGoogle Scholar
- Jin D, Wang Y, Zhao Y, Chen M (2013) microRNAs and their cross-talks in plant development. J Gen Genomics 40:161–170. https://doi.org/10.1016/j.jgg.2013.02.003 CrossRefGoogle Scholar
- Jones P, Binns D, Chang HY, Fraser M et al (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240. https://doi.org/10.1093/bioinformatics/btu031 CrossRefPubMedPubMedCentralGoogle Scholar
- Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799CrossRefGoogle Scholar
- Jones-Rhoades MW, Bartel DP, Bartel B (2006) microRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53. https://doi.org/10.1146/annurev.arplant.57.032905.105218 CrossRefPubMedGoogle Scholar
- Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. BiochimBiophys Acta 1819:137–148. https://doi.org/10.1016/j.bbagrm.2011.05.001 CrossRefGoogle Scholar
- Klein J, Saedler H, Huijser P (1996) A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene Squamosa. Mol Gen Genet 250(1):7–16. https://doi.org/10.1007/bf02191820 CrossRefPubMedGoogle Scholar
- Langmead B (2010) Aligning short sequencing reads with Bowtie. Curr Protoc Bioinform 11:11–17. https://doi.org/10.1002/0471250953.bi1107s32 CrossRefGoogle Scholar
- Lee H, Fischer RL, Goldberg RB, Harada JJ (2003) Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor. Proc Natl Acad Sci USA 100:2152–2156. https://doi.org/10.1073/pnas.0437909100 CrossRefPubMedGoogle Scholar
- Li WX, Oono Y, Zhu J, He XJ et al (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and post-transcriptionally to promote drought resistance. Plant Cell 20:2238–2251. https://doi.org/10.1105/tpc.108.059444 CrossRefPubMedPubMedCentralGoogle Scholar
- Li S, Le B, Ma X, Li S, You C et al (2016) Biogenesis of phased siRNAs on membrane-bound polysomes in Arabidopsis. ELife 5:e22750. https://doi.org/10.7554/elife.22750 CrossRefPubMedPubMedCentralGoogle Scholar
- Liang C, Liu H, Hao J, Li J, Luo L (2019) Expression profiling and regulatory network of cucumber microRNAs and their putative target genes in response to cucumber green mottle mosaic virus infection. Arch Virol 164:1121–1134. https://doi.org/10.1007/s00705-019-04152-w CrossRefPubMedPubMedCentralGoogle Scholar
- Liu JX, Howell SH (2010) Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants. Plant Cell 22:2930–2942. https://doi.org/10.1105/tpc.110.078154 CrossRefPubMedPubMedCentralGoogle Scholar
- Liu Y, Wang L, Chen D, Wu X et al (2014) Genome-wide comparison of microRNAs and their targeted transcripts among leaf, flower and fruit of sweet orange. BMC Genomics 15(1):695. https://doi.org/10.1186/1471-2164-15-695 CrossRefPubMedPubMedCentralGoogle Scholar
- Martin S, Garcia ML, Troisi A, Rubio L et al (2006) Genetic variation of populations of citrus psorosis virus. J Gen Virol 87:3097–3102. https://doi.org/10.1099/vir.0.81742-0 CrossRefPubMedGoogle Scholar
- Mu J, Tan H, Hong S, Liang Y, Zuo J (2013) Arabidopsis transcription factor genes NF-YA1, 5, 6, and 9 play redundant roles in male gametogenesis, embryogenesis, and seed development. Mol Plant 6:188–201. https://doi.org/10.1093/mp/sss061 CrossRefPubMedGoogle Scholar
- Naum-Onganı́a G, Gago-Zachert S, Peña EJ et al (2003) Citrus psorosis virus RNA 1 is of negative polarity and potentially encodes in its complementary strand a 24 K protein of unknown function and 280 K putative RNA dependent RNA polymerase. Virus Res 96:49–61. https://doi.org/10.1016/S0168-1702(03)00172-2 CrossRefPubMedGoogle Scholar
- Padmanabhan MS, Ma S, Burch-Smith TM, Czymmek K et al (2013) Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity. PLoS Pathog 9:e1003235. https://doi.org/10.1371/journal.ppat.1003235 CrossRefPubMedPubMedCentralGoogle Scholar
- Pagnussat GC, Yu HJ, Ngo QA, Rajani S et al (2005) Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132:603–614. https://doi.org/10.1242/dev.01595 CrossRefPubMedPubMedCentralGoogle Scholar
- Peña EJ, Robles Luna G, Zanek MC, Borniego MB et al (2012) Citrus psorosis and mirafiori lettuce big-vein ophiovirus coat proteins localize to the cytoplasm and self interact in vivo. Virus Res 170:34–43. https://doi.org/10.1016/j.virusres.2012.08.005 CrossRefPubMedGoogle Scholar
- Qu F, Ye X, Morris TJ (2008) Arabidopsis DRB4, AGO1, AGO7 and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proc Natl Acad Sci USA 105:14732–14737. https://doi.org/10.1073/pnas.0805760105 CrossRefPubMedGoogle Scholar
- Reyes CA, Ocolotobiche EE, Marmisolle FE, Robles Luna G et al (2016) Citrus psorosis virus 24 K protein interacts with citrus miRNA precursors, affects their processing and subsequent miRNA accumulation and target expression. Mol Plant Pathol 17(3):317–329. https://doi.org/10.1111/mpp.12282 CrossRefPubMedGoogle Scholar
- Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110(4):513–520. https://doi.org/10.1016/S0092867402008632 CrossRefPubMedGoogle Scholar
- Robles Luna G, Peña EJ, Borniego MB, Heinlein M, Garcia ML (2013) Ophioviruses CPsV and MiLBVV movement protein is encoded in RNA 2 and interacts with the coat protein. Virology 441(2):152–161. https://doi.org/10.1016/j.virol.2013.03.019 CrossRefPubMedGoogle Scholar
- Robles Luna G, Reyes CA, Peña EJ, Ocolotobiche E et al (2017) Identification and characterization of two RNA silencing suppressors encoded by ophioviruses. Virus Res 235:96–105. https://doi.org/10.1016/j.virusres.2017.04.013 CrossRefPubMedGoogle Scholar
- Robles Luna G, Peña EJ, Borniego MB, Heinlein M, García ML (2018) Citrus psorosis virus movement protein contains an aspartic protease required for autocleavage and the formation of tubule-like structures at plasmodesmata. J Virol 92(21):1–18. https://doi.org/10.1128/jvi.00355-18 CrossRefGoogle Scholar
- Roistacher CN (1991) Graft-transmissible diseases of citrus: Handbook for detection and diagnosis. Rome: International Organization of Citrus Virologists. Food and Agriculture Organization of the United NationsGoogle Scholar
- Roistacher CN (1993) Psorosis—a review. 12th Conf International Organisation of Citrus Virologists. IOCV, Riverside, pp 139–162Google Scholar
- Singh K, Talla A, Qiu W (2012) Small RNA profiling of virus-infected grapevines: evidences for virus infection-associated and variety-specific miRNAs. Funct Integr Genomics 12:659–669. https://doi.org/10.1007/s10142-012-0292-1 CrossRefPubMedGoogle Scholar
- Song C, Jia Q, Fang J, Li F, Wang C, Zhang Z (2010a) Computational identification of citrus microRNAs and target analysis in citrus expressed sequence tags. Plant Biol 12:927–934. https://doi.org/10.1111/j.1438-8677.2009.00300.x CrossRefPubMedGoogle Scholar
- Song C, Wang C, Zhang C, Korir NK et al (2010b) Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (Citrus trifoliata). BMC Genomics 11:431. https://doi.org/10.1186/1471-2164-11-431 CrossRefPubMedPubMedCentralGoogle Scholar
- Tagami Y, Inaba N, Kutsuna N, Kurihara Y, Watanabe Y (2007) Specific enrichment of miRNAs in Arabidopsis thaliana infected with tobacco mosaic virus. DNA Res 14:227–233. https://doi.org/10.1093/dnares/dsm022 CrossRefPubMedPubMedCentralGoogle Scholar
- Tang G, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63. https://doi.org/10.1101/gad.1048103 CrossRefPubMedPubMedCentralGoogle Scholar
- Tong A, Yuan Q, Wang S, Peng J et al (2017) Altered accumulation of osa-miR171b contributes to rice stripe virus infection by regulating disease symptoms. J Exp Bot 68:4357–4367. https://doi.org/10.1093/jxb/erx230 CrossRefPubMedPubMedCentralGoogle Scholar
- Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687. https://doi.org/10.1016/j.cell.2009.01.046 CrossRefPubMedGoogle Scholar
- Wang A (2015) Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu Rev Phytopathol. https://doi.org/10.1146/annurev-phyto-080614-120001 CrossRefPubMedGoogle Scholar
- Warpeha KM, Upadhyay S, Yeh J, Adamiak J et al (2007) The GCR1, GPA1, PRN1, NF-Y signal chain mediates both blue light and abscisic acid responses in Arabidopsis. Plant Physiol 143:1590–1600. https://doi.org/10.1104/pp.106.089904 CrossRefPubMedPubMedCentralGoogle Scholar
- Wu XM, Liu MY, Xu Q, Guo WW (2010) Identification and characterization of microRNAs from citrus expressed sequence tags. Tree Gen Genome 7:117–133. https://doi.org/10.1007/s11295-010-0319-5 CrossRefGoogle Scholar
- Xiao B, Yang X, Ye CY, Liu Y et al (2014) A diverse set of miRNAs responsive to begomovirus-associated betasatellite in Nicotiana benthamiana. BMC Plant Biol 14(1):60. https://doi.org/10.1186/1471-2229-14-60 CrossRefPubMedPubMedCentralGoogle Scholar
- Xu Q, Chen LL, Ruan X, Chen D et al (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–66. https://doi.org/10.1038/ng.2472 CrossRefPubMedGoogle Scholar
- Xu D, Mou G, Wang K, Zhou G (2014) microRNAs responding to southern rice black-streaked dwarf virus infection and their target genes associated with symptom development in rice. Virus Res 190:60–68. https://doi.org/10.1016/j.virusres.2014.07.007 CrossRefPubMedGoogle Scholar
- Yin Z, Murawska Z, Xie F, Pawelkowicz M et al (2018) microRNA response in potato virus Y infected tobacco shows strain-specificity depending on host and symptom severity. Virus Res 260:20–32. https://doi.org/10.1016/j.virusres.2018.11.002 CrossRefPubMedGoogle Scholar
- Yu X, Willmann MR, Anderson SJ, Gregory BD (2016) Genome-wide mapping of uncapped and cleaved transcripts reveals a role for the nuclear mRNA ´cap-binding complex in co-translational RNA decay in Arabidopsis. Plant Cell 28:2385–2397. https://doi.org/10.1105/tpc.16.00456 CrossRefPubMedPubMedCentralGoogle Scholar
- Zanek MC, Peña EJ, Reyes CA, Figueroa J et al (2006) Detection of citrus psorosis virus in the northwestern citrus production area of Argentina by using an improved TAS-ELISA. J Virol Methods 137:245–251. https://doi.org/10.1016/j.jviromet.2006.06.021 CrossRefPubMedGoogle Scholar
- Zhang JZ, Ai XY, Guo WW, Peng SA et al (2012) Identification of miRNAs and their target genes using deep sequencing and degradome analysis in trifoliate orange [Poncirus trifoliata L. Raf] [corrected]. Mol Biotechnol 51:44–57. https://doi.org/10.1007/s12033-011-9439-x CrossRefPubMedGoogle Scholar
- Zhu QH, Helliwell CA (2011) Regulation of flowering time and floral patterning by miR172. J Exp Bot 62:487–495. https://doi.org/10.1093/jxb/erq295 CrossRefPubMedGoogle Scholar