, Volume 250, Issue 6, pp 2173–2186 | Cite as

Evolutionary convergence or homology? Comparative cytogenomics of Caesalpinia group species (Leguminosae) reveals diversification in the pericentromeric heterochromatic composition

  • Brena Van-Lume
  • Yennifer Mata-Sucre
  • Mariana Báez
  • Tiago Ribeiro
  • Bruno Huettel
  • Edeline Gagnon
  • Ilia J. Leitch
  • Andrea Pedrosa-Harand
  • Gwilym P. Lewis
  • Gustavo SouzaEmail author
Original Article


Main conclusion

We demonstrated by cytogenomic analysis that the proximal heterochromatin of the Northeast Brazilian species of Caesalpinia group is enriched with phylogenetically conserved Ty3/Gypsy-Tekay RT, but diverge in the presence of Ty3/Gypsy-Athila RT and satDNA.


The Caesalpinia Group includes 225 species and 27 monophyletic genera of which four occur in Northeastern Brazil: Erythrostemon (1 sp.), Cenostigma (7 spp.), Libidibia (1 sp.), and Paubrasilia (1 sp.). The last three genera are placed in different clades in the Caesalpinia Group phylogeny, and yet they are characterized by having a numerically stable karyotype 2n = 24 (16 M+8A) and GC-rich heterochromatic bands (chromomycin A3 positive/CMA+ bands) in the proximal chromosome regions. To characterize the composition of their heterochromatin and test for the homology of these chromosomal regions, genomic DNA was extracted from Cenostigma microphyllum, Libidibia ferrea, and Paubrasilia echinata, and sequenced at low coverage using the Illumina platform. The genomic repetitive fractions were characterized using a Galaxy/RepeatExplorer-Elixir platform. The most abundant elements of each genome were chromosomally located by fluorescent in situ hybridization (FISH) and compared to the CMA+ heterochromatin distribution. The repetitive fraction of the genomes of C. microphyllum, L. ferrea, and P. echinata were estimated to be 41.70%, 38.44%, and 72.51%, respectively. Ty3/Gypsy retrotransposons (RT), specifically the Tekay lineage, were the most abundant repeats in each of the three genomes. FISH mapping revealed species-specific patterns for the Tekay elements in the proximal regions of the chromosomes, co-localized with CMA+ bands. Other species-specific patterns were observed, e.g., for the Ty3/Gypsy RT Athila elements which were found in all the proximal heterochromatin of L. ferrea or restricted to the acrocentric chromosomes of C. microphyllum. This Athila labeling co-localized with satellite DNAs (satDNAs). Although the Caesalpinia Group diverged around 55 Mya, our results suggest an ancestral colonization of Tekay RT in the proximal heterochromatin. Thus, the present-day composition of the pericentromeric heterochromatin in these Northeast Brazilian species is a combination of the maintenance of an ancestral Tekay distribution with a species-specific accumulation of other repeats.


Chromosome evolution CMA+ bands Genome skimming Next-generation sequencing (NGS) RepeatExplorer Repetitive DNA SatDNA Tekay RT 



Chromomicin A3




Fluorescent in situ hybridization


Long-terminal repeat




Satellite DNA


Transposable elements



The authors wish to thank the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Ciência e Tecnologia de Pernambuco (FACEPE-APQ-0970-2.03/15) for financial support. G.S. thanks to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) by a post-doctoral grant (Estágio Pós-Doutoral 88881.119479/2016-01). This study was financed in part by the CAPES (Brazil)—Finance Code 001. G.S. and A.P.-H. receive fellowship from CNPq (process numbers PQ-310693/2018-7 and PQ-310804/2017-5, respectively).

Supplementary material

425_2019_3287_MOESM1_ESM.docx (813 kb)
Supplementary material 1 (DOCX 813 kb)


  1. Acosta MC, Moscone EA, Cocucci AA (2016) Using chromosomal data in the phylogenetic and molecular dating framework: karyotype evolution and diversification in Nierembergia (Solanaceae) influenced by historical changes in sea level. Plant Biol 18:514–526PubMedPubMedCentralGoogle Scholar
  2. Bae YA, Moon SY, Kong Y, Cho SY, Rhyu MG (2001) CsRn1, a novel active retrotransposon in a parasitic trematode, Clonorchis sinensis, discloses a new phylogenetic clade of Ty3/gypsy-like LTR retrotransposons. Mol Biol Evol 18:1474–1483PubMedPubMedCentralGoogle Scholar
  3. Barros e Silva AE, Guerra M (2010) The meaning of DAPI bands observed after C-banding and FISH procedures. Biotech Histochem 85:115–125PubMedPubMedCentralGoogle Scholar
  4. Bilinski P, Albert PS, Berg JJ, Birchler JA, Grote MN, Lorant A, Quezada J, Swarts K, Yang J, Ross-Ibarra J (2018) Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays. PLoS Genet 14(5):e1007162PubMedPubMedCentralGoogle Scholar
  5. Chalup L, Samoluk SS, Neffa VS, Seijo G (2015) Karyotype characterization and evolution in South American species of Lathyrus (Notolathyrus, Leguminosae) evidenced by heterochromatin and rDNA mapping. J Plant Res 128:893–908PubMedPubMedCentralGoogle Scholar
  6. Chiarini FE, Santiñaque FF, Urdampilleta JD, Las Peñas ML (2014) Genome size and karyotype diversity in Solanum sect. Acanthophora (Solanaceae). Plant Syst Evol 300:113–125Google Scholar
  7. De Castro Nunes R, Orozco-Arias S, Crouzillat D, Mueller LA, Strickler SR, Descombes P, Fournier C, Moine D, Kochko A, Yuyama PM, Vanzela ALL, Guyot R (2018) Structure and distribution of centromeric retrotransposons at diploid and allotetraploid Coffea centromeric and pericentromeric regions. Front Plant Sci 9:175Google Scholar
  8. Eickbush TH, Jamburuthugoda VK (2008) The diversity of retrotransposons and the properties of their reverse transcriptases. Virus Res 134:221–234PubMedPubMedCentralGoogle Scholar
  9. Emadzade K, Jang TS, Macas J, Kovařík A, Novák P, Parker J, Weiss-Schneeweiss H (2014) Differential amplification of satellite PaB6 in chromosomally hypervariable Prospero autumnale complex (Hyacinthaceae). Ann Bot 114(8):1597–1608PubMedPubMedCentralGoogle Scholar
  10. Fischle W, Wang Y, Jacobs SA, Kim Y, Allis CD, Khorasanizadeh S (2003) Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Gene Dev 17:1870–1881PubMedPubMedCentralGoogle Scholar
  11. Gagnon E, Bruneau A, Hughes CE, De Queiroz LP, Lewis GP (2016) A new generic system for the pantropical group (Leguminosae). Phytokeys 71:1–160Google Scholar
  12. Gagnon E, Ringelberg JJ, Bruneau A, Lewis GP, Hughes CE (2019) Global succulent biome phylogenetic conservatism across the pantropical Caesalpinia Group (Leguminosae). New Phytol 222(4):1994–2008PubMedPubMedCentralGoogle Scholar
  13. Gao X, Hou Y, Ebina H, Levin HL, Voytas DF (2008) Chromodomains direct integration of retrotransposons to heterochromatin. Genome Res 18:359–369PubMedPubMedCentralGoogle Scholar
  14. Garrido-Ramos MA (2015) Satellite DNA in plants: more than just rubbish. Cytogenet Genome Res 146(2):153–170PubMedPubMedCentralGoogle Scholar
  15. González ML, Chiapella JO, Urdampilleta JD (2018) Characterization of some satellite DNA families in Deschampsia antarctica (Poaceae). Polar Biol 41(3):457–468Google Scholar
  16. Hartley G, O’Neill RJ (2019) Centromere repeats: hidden gems of the genome. Genes 10(3):223Google Scholar
  17. Hřibová E, Neumann P, Matsumoto T, Roux N, Macas J, Doležel J (2010) Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biol 10:204PubMedPubMedCentralGoogle Scholar
  18. Jacobs SA, Khorasanizadeh S (2002) Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295:2080–2083PubMedPubMedCentralGoogle Scholar
  19. Kejnovsky E, Hawkins JS, Feschotte C (2012) Plant transposable elements: biology and evolution. In: Wendel JF, Greilhuber J, Doležel J, Leitch IJ (eds) Plant genome diversity, vol 1. Plant genomes, their residents and their evolutionary dynamics. Springer-Verlag, Wien, pp 17–34Google Scholar
  20. Kelly LJ, Renny-Byfield S, Pellicer J, Macas J, Novák P, Neumann P, Lysak MA, Day PD, Berger M, Fay MF, Nichols RA, Leitch AR, Leitch IJ (2015) Analysis of the giant genomes of F ritillaria (L iliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size. New Phytol 208:596–607PubMedPubMedCentralGoogle Scholar
  21. Lanciano S, Mirouze M (2018) Transposable elements: all mobile, all different, some stress responsive, some adaptive? Curr Opin Genet Dev 49:106–114PubMedPubMedCentralGoogle Scholar
  22. Lee Y-I, Yap JW, Izan S, Leitch IJ, Fay MF, Lee Y-C, Hidalgo O, Dodsworth S, Smulders MJM, Gravendeel B, Leitch A (2018) Satellite DNA in Paphiopedilum subgenus Parvisepalum as revealed by high-throughput sequencing and fluorescent in situ hybridization. BMC Genomics 19(1):578PubMedPubMedCentralGoogle Scholar
  23. Lim KB, De Jong H, Yang TJ, Park JY, Kwon SJ, Kim JS, Lim MH, Kim JA, Jin M, Jin YM, Kim SH, Lim YP, Bang JW, Kim HI, Park BS (2005) Characterization of rDNAs and tandem repeats in the heterochromatin of Brassica rapa. Mol Cells 19(3):436–444PubMedPubMedCentralGoogle Scholar
  24. Lin CH, Li B, Swanson S, Zhang Y, Florens L, Washburn MP, Abmayr SM, Workman JL (2008) Heterochromatin protein 1a stimulates histone H3 lysine 36 demethylation by the Drosophila KDM4A demethylase. Mol Cell 32(5):696–706PubMedPubMedCentralGoogle Scholar
  25. Llorens C, Munoz-Pomer A, Bernad L, Botella H, Moya A (2009) Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees. Biol Direct 4:41PubMedPubMedCentralGoogle Scholar
  26. Lyu Y, Wu X, Ren H, Zhou F, Zhou H, Zhang X, Yang H (2017) Selection of reliable reference genes for gene expression studies in Trichoderma afroharzianum LTR-2 under oxalic acid stress. J Microbiol Methods 141:28–31PubMedPubMedCentralGoogle Scholar
  27. Macas J, Novak P, Pellicer J, Čížková J, Koblížková A, Neumann P, Leitch IJ (2015) In depth characterization of repetitive DNA in 23 plant genomes reveals sources of genome size variation in the legume tribe Fabeae. PLoS One 10:e0143424PubMedPubMedCentralGoogle Scholar
  28. Malik HS, Eickbush TH (1999) Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR retrotransposons. J Virol 73:5186–5190PubMedPubMedCentralGoogle Scholar
  29. Marin I, Llorens C (2000) Ty3/Gypsy retrotransposons: description of new Arabidopsis thaliana elements and evolutionary perspectives derived from comparative genomic data. Mol Biol Evol 17:1040–1049PubMedPubMedCentralGoogle Scholar
  30. McFarlane RJ, Humphrey TC (2010) A role for recombination in centromere function. Trends Genet 26(5):209–213PubMedPubMedCentralGoogle Scholar
  31. Menezes RS, Brady SG, Carvalho AF, Del Lama MA, Costa MA (2017) The roles of barriers, refugia, and chromosomal clines underlying diversification in Atlantic Forest social wasps. Sci Rep 7:7689PubMedPubMedCentralGoogle Scholar
  32. Min J, Zhang Y, Xu RM (2003) Structural basis for specific binding of polycomb chromodomain to histone H3 methylated at Lys 27. Gene Dev 17:1823–1828PubMedPubMedCentralGoogle Scholar
  33. Mlinarec J, Franjević D, Harapin J, Besendorfer V (2016) The impact of the Tekay chromoviral elements on genome organisation and evolution of Anemone sl (Ranunculaceae). Plant Biol 18:332–347PubMedPubMedCentralGoogle Scholar
  34. Neumann P, Navrátilová A, Koblížková A, Kejnovský E, Hřibová E, Hobza R, Macas J (2011) Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mobile DNA 2:4PubMedPubMedCentralGoogle Scholar
  35. Neumann P, Novák P, Hoštáková N, Macas J (2019) Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mobile DNA 10:1PubMedPubMedCentralGoogle Scholar
  36. Nielsen PR, Nietlispach D, Mott HR, Callaghan J, Bannister A, Kouzarides T, Laue ED (2002) Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416:103–107PubMedPubMedCentralGoogle Scholar
  37. Novák P, Neumann P, Pech J, Steinhaisl J, Macas J (2013) RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next generation sequence reads. Bioinformatics 29:792–793PubMedPubMedCentralGoogle Scholar
  38. Novák P, Robledillo LÁ, Koblížková A, Vrbová I, Neumann P, Macas J (2017) TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acid Res 45:e111PubMedPubMedCentralGoogle Scholar
  39. Novikova O (2009) Chromodomains and LTR retrotransposons in plants. Commun Integr Biol 2(2):158–162PubMedPubMedCentralGoogle Scholar
  40. Oliver KR, McComb JA, Greene WK (2013) Transposable elements: powerful contributors to angiosperm evolution and diversity. Genome Biol Evol 5(10):1886–1901PubMedPubMedCentralGoogle Scholar
  41. Piednoël M, Carrete-Vega G, Renner S (2013) Characterization of the LTR retrotransposon repertoire of a plant clade of six diploid and one tetraploid species. Plant J 75:699–709PubMedPubMedCentralGoogle Scholar
  42. Piednoël M, Souza A, Renner S (2015) Transposable elements in a clade of three tetraploids and a diploid relative, focusing on Gypsy amplification. Mobile DNA 6(5):1–9Google Scholar
  43. Pisupati R, Vergara D, Kane NC (2018) Diversity and evolution of the repetitive genomic content in Cannabis sativa. BMC Genomics 19:156PubMedPubMedCentralGoogle Scholar
  44. Rambaut A (2009) FigTree v1. 3.1: Tree figure drawing tool. http://treebioedacuk/software/figtree/Google Scholar
  45. Ribeiro T, Marques A, Novák P, Schubert V, Vanzela AL, Macas J, Rouben A, Pedrosa-Harand A (2017) Centromeric and non-centromeric satellite DNA organization differs in holocentric Rhynchospora species. Chromosoma 126:325–335PubMedPubMedCentralGoogle Scholar
  46. Robledillo LÁ, Koblížková A, Novák P, Böttinger K, Vrbová I, Neumann P, Schubert I, Macas J (2018) Satellite DNA in Vicia faba is characterized by remarkable diversity in its sequence composition, association with centromeres, and replication timing. Sci Rep 8(1):5838Google Scholar
  47. Rodrigues PS, Souza MM, Melo CAF, Pereira TNS, Corrêa RX (2018) Karyotype diversity and 2C DNA content in species of the Caesalpinia group. BMC Genet 19(1):25PubMedPubMedCentralGoogle Scholar
  48. Samoluk SS, Robledo G, Bertioli D, Seijo JG (2017) Evolutionary dynamics of an at-rich satellite DNA and its contribution to karyotype differentiation in wild diploid Arachis species. Mol Genet Genomics 292:283–296PubMedPubMedCentralGoogle Scholar
  49. Samoluk SS, Chalup LM, Chavarro C, Robledo G, Bertioli DJ, Jackson SA, Seijo G (2019) Heterochromatin evolution in Arachisinvestigated through genome-wide analysis of repetitive DNA. Planta 249:1405–1415PubMedPubMedCentralGoogle Scholar
  50. Schubert I, Vu GT (2016) Genome stability and evolution: attempting a holistic view. Trends Plant Sci 21(9):749–757PubMedPubMedCentralGoogle Scholar
  51. Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Org Diver Evol 12(4):335–337Google Scholar
  52. Sonnhammer EL, Durbin R (1995) A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167(1–2):GC1–GC10PubMedPubMedCentralGoogle Scholar
  53. Souza G, Crosa O, Guerra M (2015) Karyological, morphological, and phylogenetic diversification in Leucocoryne Lindl. (Allioideae: Amaryllidaceae). Plant Syst Evol 301:2013–2023Google Scholar
  54. Souza G, Costa L, Guignard MS, Van-Lume B, Pellicer J, Gagnon E, Leitch IJ, Lewis GP (2019) Do tropical plants have smaller genomes? Correlation between genome size and climatic variables in the Caesalpinia Group (Caesalpinioideae, Leguminosae). Perspect Plant Ecol 38:13–23Google Scholar
  55. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3— new capabilities and interfaces. Nucleic Acid Res 40:115Google Scholar
  56. Van-Lume B, Esposito T, Diniz-Filho JAF, Gagnon E, Lewis GP, Souza G (2017) Heterochromatic and cytomolecular diversification in the Caesalpinia group (Leguminosae): relationships between phylogenetic and cytogeographical data. Perspect Plant Ecol 29:51–63Google Scholar
  57. Vondrak T, Ávila Robledillo L, Novák P, Koblizkova A, Neumann P, Macas J (2019) Genome-wide characterization of satellite DNA arrays in a complex plant genome using nanopore reads. BioRxiv 677575Google Scholar
  58. Voronova A, Belevich V, Jansons A, Rungis D (2014) Stress-induced transcriptional activation of retrotransposon-like sequences in the Scots pine (Pinus sylvestris L.) genome. Tree Genet Genomes 10:937–951Google Scholar
  59. Weber B, Heitkam T, Holtgräwe D, Weisshaar B, Minoche AE, Dohm JC, Himmelbauer H,, Schmidt T (2013) Highly diverse chromoviruses of Beta vulgaris are classified by chromodomains and chromosomal integration. Mobile DNA 4:8PubMedPubMedCentralGoogle Scholar
  60. Weising K, Nybom H, Pfenninger M, Wolff K, Kahl G (2005) DNA fingerprinting in plants: principles, methods, and applications. CRC Press, Boca RatonGoogle Scholar
  61. Weiss-Schneeweiss H, Leitch AR, McCann J, Jang T-S, Macas J (2015) Employing next generation sequencing to explore the repeat landscape of the plant genome. In: Horandl E, Appelhans M (eds) Next Generation Sequencing in Plant Systematics. Regnum Vegetabile 157, vol 158. Koeltz Scientific Books, Konigstein, pp 155–179Google Scholar
  62. Wessler SR (2006) Eukaryotic transposable elements: Teaching old genomes new tricks. Implicit Genome 138–165Google Scholar
  63. Yasuda K, Ito M, Sugita T, Tsukiyama T, Saito H, Naito K, Okumoto Y (2013) Utilization of transposable element mPing as a novel genetic tool for modification of the stress response in rice. Mol Breeding 32:505–516Google Scholar
  64. Zakrzewski F, Schmidt T (2017) Epigenetic characterization of satellite DNA in sugar beet (Beta vulgaris). In: Rajewsky N, Jurga S, Barciszewski J (eds) Plant epigenetics. Springer, Cham, pp 445–462Google Scholar
  65. Zhang QJ, Gao LZ (2017) Rapid and recent evolution of LTR retrotransposons drives rice genome evolution during the speciation of AA-genome Oryza species. G3-Genes Genom Genet 7:1875–1885Google Scholar
  66. Zhang Y, Fan C, Li S, Chen Y, Wang RRC, Zhang X, Han F, Hu Z (2017) The diversity of sequence and chromosomal distribution of new transposable element-related segments in the rye genome revealed by FISH and lineage annotation. Front Plant Sci 8:1706PubMedPubMedCentralGoogle Scholar
  67. Zuccolo A, Sebastian A, Talag J, Yu Y, Kim H, Collura K, Wing RA (2007) Transposable element distribution, abundance and role in genome size variation in the genus Oryza. BMC Evol Biol 7:152PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Brena Van-Lume
    • 1
  • Yennifer Mata-Sucre
    • 1
  • Mariana Báez
    • 1
  • Tiago Ribeiro
    • 1
    • 5
  • Bruno Huettel
    • 2
  • Edeline Gagnon
    • 3
  • Ilia J. Leitch
    • 4
  • Andrea Pedrosa-Harand
    • 1
  • Gwilym P. Lewis
    • 4
  • Gustavo Souza
    • 1
    Email author
  1. 1.Laboratory of Plant Cytogenetics and Evolution, Department of BotanyFederal University of PernambucoRecifeBrazil
  2. 2.Max Planck-Genome-center CologneCologneGermany
  3. 3.Royal Botanic Garden EdinburghEdinburghUK
  4. 4.Department of Comparative Plant and Fungal BiologyRichmondUK
  5. 5.Department of Botany and Ecology, Institute of BiosciencesFederal University of Mato GrossoCuiabáBrazil

Personalised recommendations