, Volume 250, Issue 6, pp 2023–2031 | Cite as

Photobiont-dependent humidity threshold for chlorolichen photosystem II activation

  • Nathan H. PhinneyEmail author
  • Knut Asbjørn Solhaug
  • Yngvar Gauslaa
Original Article


Main conclusion

Photobiont type influences the relative humidity threshold at which photosystem II activates in green algal lichens.


Water vapor uptake alone can activate photosynthesis in lichens with green algal photobionts. However, the minimum relative humidity needed for activation is insufficiently known. The objective of this study was to quantify the humidity threshold for photosystem II (PSII) activation in a range of chlorolichen species associated with photobionts from Trebouxiaceae, Coccomyxaceae and Trentepohliaceae. These lichens exhibit distribution, habitat and substrate patterns that are likely coupled to their efficiency in utilizing water vapor at lower levels of relative humidity (RH) for photosynthesis. Using chlorophyll fluorescence imaging during water uptake from humid air of 25 species of chlorolichens representing the above photobiont groups, we monitored PSII activation within controlled chambers with constant RH at five levels ranging from 75.6 to 95.4%. The results demonstrate clear photobiont-specific activation patterns: the trentepohlioid lichens activated PSII at significantly lower RH (75.6%) than trebouxioid (81.7%) and coccomyxoid (92.0%) lichens. These responses are consistent with a preference for warm and sheltered habitats for trentepohlioid lichens, with cool and moist habitats for the coccomyxoid lichens, and with a more widespread occurrence of the trebouxioid lichens. Within each photobiont group, lichen species exposed to marine aerosols in their source habitats seemed to be activated at lower RH than lichens sampled from inland sites. High osmolyte concentration may therefore play a role in lowering a photobiont’s activation threshold. We conclude that photobiont type influences water vapor-driven photosynthetic activation of lichens, thereby shaping the ecological niches in which they occur.


Chlorophyll fluorescence Ecophysiology Green algae Osmolytes 



Maximal quantum yield of PSII


Relative humidity



We thank Richard P. Beckett and Annie Ås Hovind for supplying lichen specimens from South Africa and Madeira.


  1. Aas W, Hjellbrekke A-G, Fagerli H, Benedictow A (2017) Deposition of major inorganic compounds in Norway 2012–2016. NILU rapportGoogle Scholar
  2. Beck A, Friedl T, Rambold G (1998) Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. New Phytol 139:709–720Google Scholar
  3. Beckett R (1995) Some aspects of the water relations of lichens from habitats of contrasting water status studied using thermocouple psychrometry. Ann Bot 76(2):211–217Google Scholar
  4. Bertsch A (1966) Über den CO2-Gaswechsel einiger Flechten nach Wasserdampfaufnahme. Planta 68(2):157–166Google Scholar
  5. Blaha J, Baloch E, Grube M (2006) High photobiont diversity associated with the euryoecious lichen-forming ascomycete Lecanora rupicola (Lecanoraceae, Ascomycota). Biol J Linn Soc 88(2):283–293Google Scholar
  6. Brock TD (1975) The effect of water potential on photosynthesis in whole lichens and in their liberated algal components. Planta 124(1):13–23Google Scholar
  7. Cao S, Zhang F, Zheng H, Liu C, Peng F, Zhou Q (2018) Coccomyxa antarctica sp nov from the Antarctic lichen Usnea aurantiacoatra. PhytoKeys 98:107Google Scholar
  8. Carniel FC, Zanelli D, Bertuzzi S, Tretiach M (2015) Desiccation tolerance and lichenization: a case study with the aeroterrestrial microalga Trebouxia sp. (Chlorophyta). Planta 242(2):493–505Google Scholar
  9. Delmail D, Grube M, Parrot D, Cook-Moreau J, Boustie J, Labrousse P, Tomasi S (2013) Halotolerance in lichens: symbiotic coalition against salt stress. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 115–148Google Scholar
  10. Ellis CJ, Coppins BJ (2006) Contrasting functional traits maintain lichen epiphyte diversity in response to climate and autogenic succession. J Biogeogr 33(9):1643–1656Google Scholar
  11. Ertz D, Guzow-Krzemińska B, Thor G, Łubek A, Kukwa M (2018) Photobiont switching causes changes in the reproduction strategy and phenotypic dimorphism in the Arthoniomycetes. Sci Rep 8(1):4952PubMedPubMedCentralGoogle Scholar
  12. Gauslaa Y, Coxson D (2011) Interspecific and intraspecific variations in water storage in epiphytic old forest foliose lichens. Botany 89:787–798Google Scholar
  13. Gauslaa Y, Coxson DS, Solhaug KA (2012) The paradox of higher light tolerance during desiccation in rare old forest cyanolichens than in more widespread co-occurring chloro- and cephalolichens. New Phytol 195:812–822PubMedPubMedCentralGoogle Scholar
  14. Gauslaa Y, Solhaug KA, Longinotti S (2017) Functional traits prolonging photosynthetically active periods in epiphytic cephalolichens during desiccation. Environ Exp Bot 141:83–91Google Scholar
  15. Gauslaa Y, Johlander S, Nordén B (2019) Lobaria amplissima thalli with external cephalodia need more rain than thalli without. Lichenologist 51(3):281–286Google Scholar
  16. Greenspan L (1977) Humidity fixed points of binary saturated aqueous solutions. J Res Natl Bur Stand 81(1):89–96Google Scholar
  17. Grube M, Muggia L, Baloch E, Hametner C, Stocker-Wörgötter E (2017) Symbioses of lichen-forming fungi with Trentepohlialean algae. In: Grube M, Seckbach J, Muggia L (eds) Algal and cyanobacteria symbioses. World Scientific Europe, Covent Garden, London, pp 85–110Google Scholar
  18. Gustavs L, Eggert A, Michalik D, Karsten U (2010) Physiological and biochemical responses of green microalgae from different habitats to osmotic and matric stress. Protoplasma 243(1–4):3–14Google Scholar
  19. Gustavs L, Schiefelbein U, Darienko T, Pröschold T (2017) Symbioses of the green algal genera Coccomyxa and Elliptochloris (Trebouxiophyceae, Chlorophyta). In: Grube M, Seckbach J, Muggia L (eds) Algal and cyanobacteria symbioses. World Scientific Europe, Covent Garden, London, pp 169–208Google Scholar
  20. Holzinger A, Karsten U (2013) Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms. Front Plant Sci 4:327PubMedPubMedCentralGoogle Scholar
  21. Jüriado I, Paal J (2019) Epiphytic lichen synusiae and functional trait groups in boreo-nemoral deciduous forests are influenced by host tree and environmental factors. Nord J Bot. CrossRefGoogle Scholar
  22. Kosugi M, Arita M, Shizuma R, Moriyama Y, Kashino Y, Koike H, Satoh K (2009) Responses to desiccation stress in lichens are different from those in their photobionts. Plant Cell Physiol 50(4):879–888Google Scholar
  23. Kosugi M, Miyake H, Yamakawa H, Shibata Y, Miyazawa A, Sugimura T, Satoh K, Itoh S, Kashino Y (2013) Arabitol provided by lichenous fungi enhances ability to dissipate excess light energy in a symbiotic green alga under desiccation. Plant Cell Physiol 54(8):1316–1325Google Scholar
  24. Lakatos M, Obregón A, Büdel B, Bendix J (2012) Midday dew—an overlooked factor enhancing photosynthetic activity of corticolous epiphytes in a wet tropical rain forest. New Phytol 194(1):245–253Google Scholar
  25. Lange OL, Redon J (1983) Epiphytische Flechten im Bereich einer chilenischen “Nebeloase” (Fray Jorge). II. Ökophysiologische Characterisierung von CO2-Gaswechesel und Wasserhaushalt. Flora 174:2245–2284Google Scholar
  26. Lange OL, Kilian E, Ziegler H (1986) Water vapor uptake and photosynthesis in lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia 71:104–110Google Scholar
  27. Lange OL, Pfanz H, Kilian E, Meyer A (1990) Effect of low water potential on photosynthesis in intact lichens and their liberated algal components. Planta 182:467–472Google Scholar
  28. Lewis LA, McCourt RM (2004) Green algae and the origin of land plants. Am J Bot 91(10):1535–1556Google Scholar
  29. Lücking R, Lumbsch HT, Di Stefano JF, Lizano D, Carranza J, Bernecker A, Chaves JL, Umana L (2008) Eremithallus costaricensis (Ascomycota: Lichinomycetes: Eremothallales), a new fungal lineage with a novel lichen symbiotic lifestyle discovered in an urban relict forest in Costa Rica. Symbiosis (Rehovot) 46(3):161–170Google Scholar
  30. Maphangwa KW, Musil CF, Raitt L, Zedda L (2012) Differential interception and evaporation of fog, dew and water vapour and elemental accumulation by lichens explain their relative abundance in a coastal desert. J Arid Environ 82:71–80Google Scholar
  31. Marini L, Nascimbene J, Nimis PL (2011) Large-scale patterns of epiphytic lichen species richness: photobiont-dependent response to climate and forest structure. Sci Total Environ 409(20):4381–4386Google Scholar
  32. Meier JL, Chapman RL (1983) Ultrastructure of the lichen Coenogonium interplexum Nyl. Am J Bot. 70(3):400–407Google Scholar
  33. Miadlikowska J, Kauff F, Högnabba F, Oliver JC, Molnár K, Fraker E, Gaya E, Hafellner J, Hofstetter V, Gueidan C (2014) A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Mol Phylogenet Evol 79:132–168Google Scholar
  34. Muggia L, Leavitt S, Barreno E (2018) The hidden diversity of lichenised Trebouxiophyceae (Chlorophyta). Phycologia 57(5):503–524Google Scholar
  35. Nash TH III (1996) Photosynthesis, respiration, productivity and growth. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 88–120Google Scholar
  36. Nash TH III, Lange OL (1988) Responses of lichens to salinity—concentration and time-course relationships and variability among Californian species. New Phytol 109(3):361–367Google Scholar
  37. Nash TH III, Reiner A, Demmig-Adams B, Kilian E, Kaiser WM, Lange OL (1990) The effect of atmospheric dessication and osmotic water stress on photosynthesis and dark respiration of lichens. New Phytol 116:269–276Google Scholar
  38. Nelsen MP, Plata ER, Andrew CJ, Lücking R, Lumbsch HT (2011) Phylogenetic diversity of Trentepohlialean algae associated with lichen-forming fungi. J Phycol 47(2):282–290Google Scholar
  39. Onofri S, de la Torre R, de Vera J-P, Ott S, Zucconi L, Selbmann L, Scalzi G, Venkateswaran KJ, Rabbow E, Sanchez Inigo FJ, Horneck G (2012) Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12(5):508–5016Google Scholar
  40. Palmer RJ, Friedmann EI (1990) Water relations, thallus structure and photosynthesis in Negev Desert lichens. New Phytol 116:597–603Google Scholar
  41. Peksa O, Škaloud P (2011) Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae). Mol Ecol 20(18):3936–3948Google Scholar
  42. Phinney NH, Solhaug KA, Gauslaa Y (2018) Rapid resurrection of chlorolichens in humid air: specific thallus mass drives rehydration and reactivation kinetics. Environ Exp Bot 148:184–191Google Scholar
  43. Pintado A, Sancho LG (2002) Ecological significance of net photosynthesis activation by water vapour uptake in Ramalina capitata from rain-protected habitats in central Spain. Lichenologist 34:403–413Google Scholar
  44. Richardson D, Hill DJ, Smith D (1968) Lichen physiology: XI. The role of the alga in determining the pattern of carbohydrate movement between lichen symbionts. New Phytol 67(3):469–486Google Scholar
  45. Rindi F, Guiry MD (2002) Diversity, life history, and ecology of Trentepohlia and Printzina (Trentepohliales, Chlorophyta) in urban habitats in western Ireland. J Phycol 38(1):39–54Google Scholar
  46. Rockland LB (1960) Saturated salt solutions for static control of relative humidity between 5°C and 40°C. Anal Chem 32(10):1375–1376Google Scholar
  47. Roser DJ, Melick D, Ling H, Seppelt R (1992) Polyol and sugar content of terrestrial plants from continental Antarctica. Antarct Sci 4(4):413–420Google Scholar
  48. Sadowsky A, Mettler-Altmann T, Ott S (2016) Metabolic response to desiccation stress in strains of green algal photobionts (Trebouxia) from two Antarctic lichens of southern habitats. Phycologia 55(6):703–714Google Scholar
  49. Smith VR, Gremmen NJM (2001) Photosynthesis in a sub-Antarctic shore-zone lichen. New Phytol 149:291–299Google Scholar
  50. Solhaug KA, Gauslaa Y (2001) Acetone rinsing—a method for testing ecological and physiological roles of secondary compounds in living lichens. Symbiosis 30(4):301–315Google Scholar
  51. Spribille T (2018) Relative symbiont input and the lichen symbiotic outcome. Curr Opin Plant Biol 44:57–63Google Scholar
  52. Stofer S, Bergamini A, Aragón G, Carvalho P, Coppins BJ, Davey S, Dietrich M, Farkas E, Kärkkäinen K, Keller C, Lökös LS, Lommi S, Máguas C, Mitchell R, Pinho P, Rico VJ, Truscott AM, Wolseley PA, Watt A, Scheidegger C (2006) Species richness of lichen functional groups in relation to land use intensity. Lichenologist 38:331–353Google Scholar
  53. Suutari M, Majaneva M, Fewer DP, Voirin B, Aiello A, Friedl T, Chiarello AG, Blomster J (2010) Molecular evidence for a diverse green algal community growing in the hair of sloths and a specific association with Trichophilus welckeri (Chlorophyta, Ulvophyceae). BMC Evol Biol 10(1):86PubMedPubMedCentralGoogle Scholar
  54. Tschermak-Woess E (1988) The algal partner. In: Galun M (ed) CRC Handbook of lichenology. CRC Press, Boca Raton, pp 39–92Google Scholar
  55. Wieners PC, Mudimu O, Bilger W (2012) Desiccation-induced non-radiative dissipation in isolated green lichen algae. Photosynth Res 113(1–3):239–247Google Scholar
  56. Wieners PC, Göthlich L, Bilger W (2019) The influence of Zn and I on growth and desiccation-induced chlorophyll fluorescence quenching of Trebouxia asymmetrica. Environ Exp Bot 162:496–503Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway

Personalised recommendations