, Volume 250, Issue 6, pp 1911–1925 | Cite as

Identification of Shaker K+ channel family members in Rosaceae and a functional exploration of PbrKAT1

  • Guodong Chen
  • Qian Chen
  • Kaijie Qi
  • Zhihua Xie
  • Hao Yin
  • Peng Wang
  • Runze Wang
  • Zhi Huang
  • Shaoling Zhang
  • Li WangEmail author
  • Juyou WuEmail author
Original Article


Main conclusion

PbrKAT1, which is inhibited by external Na+ in Xenopus laevis oocytes, is characterized as encoding a typical inward rectifying channel that is mainly expressed in guard cells.


Potassium (K+) is the most abundant cation in plant cells necessary for plant growth and development. The uptake and transport of K+ are mainly completed through transporters and channels, and the Shaker family genes are the most studied K+ channels in plants. However, there is far less information about this family in Rosaceae species. We performed a genome-wide analysis and identified Shaker K+ channel gene family members in Rosaceae. We cloned and characterized a Shaker K+ channel KAT1 from pear (Pyrus × bretschneideri). In total, 36 Shaker K+ channel genes were identified from Rosaceae species and were classified into five subgroups based on structural characteristics and a phylogenetic analysis. Whole-genome and dispersed duplications were the primary forces underlying Shaker K+ channel gene family expansion in Rosaceae, and purifying selection played a key role in the evolution of Shaker K+ channel genes. β-Glucuronidase and qRT-PCR assays revealed that PbrKAT1 was mainly expressed in leaves, especially in guard cells. PbrKAT1 displayed a typical inward-rectifying current when expressed in Xenopus laevis oocytes. The activity of PbrKAT1 was inhibited by external sodium ions, possibly playing an important role in the regulation of salt tolerance in pear. These results provide valuable information on evolution, expression and functions of the Shaker K+ channel gene family in plants.


Na+ inhibition Pear Potassium Stomata Voltage-clamp technique 





The inward rectifying K+


Whole Genome Duplication



This work was supported by the Fundamental Research Funds for the Central Universities (KJQN201926), National Natural Science Foundation of China (31801842, 31772256), and the National Key R&D Program of China (2018YFD0201400).

Compliance with ethical standards

Competing interests

The authors declare that no competing interests exist.

Supplementary material

425_2019_3275_MOESM1_ESM.tif (3.7 mb)
Supplementary material 1 (TIFF 3778 kb)
425_2019_3275_MOESM2_ESM.tif (1.7 mb)
Supplementary material 2 (TIFF 1698 kb)
425_2019_3275_MOESM3_ESM.tif (843 kb)
Supplementary material 3 (TIFF 843 kb)
425_2019_3275_MOESM4_ESM.tif (4.7 mb)
Supplementary material 4 (TIFF 4837 kb)
425_2019_3275_MOESM5_ESM.tif (1 mb)
Supplementary material 5 (TIFF 1029 kb)
425_2019_3275_MOESM6_ESM.tif (224 kb)
Supplementary material 6 (TIFF 224 kb)
425_2019_3275_MOESM7_ESM.tif (2 mb)
Supplementary material 7 (TIFF 2001 kb)
425_2019_3275_MOESM8_ESM.docx (17 kb)
Supplementary material 8 (DOCX 16 kb)
425_2019_3275_MOESM9_ESM.docx (23 kb)
Supplementary material 9 (DOCX 23 kb)


  1. Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF (1992) Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 89(9):3736–3740. CrossRefGoogle Scholar
  2. Bauer CS, Hoth S, Haga K, Philippar K, Aoki N, Hedrich R (2000) Differential expression and regulation of K+ channels in the maize coleoptile: molecular and biophysical analysis of cells isolated from cortex and vasculature. Plant J 24(2):139–145. CrossRefGoogle Scholar
  3. Bregante M, Yang Y, Formentin E, Carpaneto A, Schroeder JI, Gambale F, Lo Schiavo F, Costa A (2008) KDC1, a carrot Shaker-like potassium channel, reveals its role as a silent regulatory subunit when expressed in plant cells. Plant Mol Biol 66(1–2):61–72. CrossRefGoogle Scholar
  4. Chen GD, Li XL, Chen Q, Wang L, Qi KJ, Yin H, Qiao X, Wang P, Zhang SL, Wu JY, Huang Z (2018) Dynamic transcriptome analysis of root nitrate starvation and re-supply provides insights into nitrogen metabolism in pear (Pyrus bretschneideri). Plant Sci 277:322–333. CrossRefGoogle Scholar
  5. Cuéllar T, Azeem F, Andrianteranagna M, Pascaud F, Verdeil JL, Sentenac H, Eacute Zimmermann S, Gaillard I (2013) Potassium transport in developing fleshy fruits: the grapevine inward K+ channel VvK1.2 is activated by CIPK-CBL complexes and induced in ripening berry flesh cells. Plant J 73(6):1006–1018CrossRefGoogle Scholar
  6. Dennison KL, Robertson WR, Lewis BD, Hirsch RE, Sussman MR, Spalding EP (2001) Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis. Plant Physiol 127(3):1012–1019CrossRefGoogle Scholar
  7. Dreyer I, Uozumi N (2011) Potassium channels in plant cells. FEBS J 278(22):4293–4303. CrossRefGoogle Scholar
  8. Dreyer I, Antunes S, Hoshi T, Müller-Röber B, Palme K, Pongs O, Reintanz B, Hedrich R (1997) Plant K+ channel alpha-subunits assemble indiscriminately. Biophys J 72(5):2143–2150. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7(10):e1002195. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Eisenach C, Papanatsiou M, Hillert EK, Blatt MR (2014) Clustering of the K+ channel GORK of Arabidopsis parallels its gating by extracellular K+. Plant J 78(2):203–214. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fuchs I, Stolzle S, Ivashikina N, Hedrich R (2005) Rice K+ uptake channel OsAKT1 is sensitive to salt stress. Planta 221(2):212–221. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gambale F, Uozumi N (2006) Properties of Shaker-type potassium channels in higher plants. J Membrane Biol 210(1):1–19CrossRefGoogle Scholar
  13. Garriga M, Raddatz N, Véry AA, Sentenac H, Rubio-Meléndez ME, González W, Dreyer I (2017) Cloning and functional characterization of HKT1 and AKT1 genes of Fragaria spp.−Relationship to plant response to salt stress. J Plant Physiol 210:9–17CrossRefGoogle Scholar
  14. Geiger A, Becker D, Vosloh D, Gambale F, Palme K, Rehers M, Anschuetz U, Dreyer I, Kudla J, Hedrich R (2009) Heteromeric AtKC1•AKT1 channels in Arabidopsis roots facilitate growth under K+-limiting conditions. J Biol Chem 284(32):21288–21295CrossRefGoogle Scholar
  15. Golldack D, Quigley F, Michalowski CB, Kamasani UR, Bohnert HJ (2003) Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. Plant Mol Biol 51(1):71–81. CrossRefGoogle Scholar
  16. Gomez-Porras JL, Riano-Pachon DM, Benito B, Haro R, Sklodowski K, Rodriguez-Navarro A, Dreyer I (2012) Phylogenetic analysis of K+ transporters in bryophytes, lycophytes, and flowering plants indicates a specialization of vascular plants. Front Plant Sci 3:167. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Guo ZK, Yang Q, Yan PQ (2008) Cloning and homology modeling of a potassium channel gene NKC1 from Nicotiana rustica. Acta Tabacaria Sinica 14(5):63–68Google Scholar
  18. Hartje S, Zimmermann S, Klonus D, Mueller-Roeber B (2000) Functional characterisation of LKT1, a K+ uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K+ channel SKT1 after expression in Xenopus oocytes. Planta 210(5):723–731CrossRefGoogle Scholar
  19. Hoth S, Hedrich R (1999) Distinct molecular bases for pH sensitivity of the guard cell K+ channels KST1 and KAT1. J Biol Chem 274(17):11599–11603CrossRefGoogle Scholar
  20. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901–3907CrossRefGoogle Scholar
  21. Jegla T, Busey GW, Assmann SM (2018) Evolution and structural characteristics of plant voltage-gated K+ channels. Plant Cell. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kourie J, Goldsmith MH (1992) K+ channels are responsible for an inwardly rectifying current in the plasma membrane of mesophyll protoplasts of Avena sativa. Plant Physiol 98(3):1087–1097. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kreps JA, Wu YJ, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130(4):2129–2141. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19(9):1639–1645. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lam-Tung N, Schmidt HA, Arndt VH, Quang MB (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32(1):268–274CrossRefGoogle Scholar
  26. Lebaudy A, Very AA, Sentenac H (2007) K+ channel activity in plants: genes, regulations and functions. FEBS Lett 581(12):2357–2366. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lebaudy A, Hosy E, Simonneau T, Sentenac H, Thibaud JB, Dreyer I (2008) Heteromeric K + channels in plants. Plant J 54(6):1076–1082. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Li Q, Qiao X, Yin H, Zhou Y, Dong H, Qi K, Li L, Zhang S (2019) Unbiased subgenome evolution following a recent whole-genome duplication in pear (Pyrus bretschneideri Rehd). Hortic Res 6(1):34. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci USA 102(15):5454–5459. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Maher C, Stein L, Ware D (2006) Evolution of Arabidopsis microRNA families through duplication events. Genome Res 16(4):510–519. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mouline K, Véry AA, Gaymard F, Boucherez J, Pilot G, Devic M, Bouchez D, Thibaud JB, Sentenac H (2002) Pollen tube development and competitive ability are impaired by disruption of a Shaker K+ channel in Arabidopsis. Gene Dev 16(3):339–350CrossRefGoogle Scholar
  32. Müller-Röber B, Ellenberg J, Provart N, Willmitzer L, Busch H, Becker D, Dietrich P, Hoth S, Hedrich R (1995) Cloning and electrophysiological analysis of KST1, an inward rectifying K+ channel expressed in potato guard cells. EMBO J 14(11):2409–2416CrossRefGoogle Scholar
  33. Nakamura RL, Hirsch RE, Sedbrook JC, Gaber RF, Sussman MR (1995) Expression of an Arabidopsis potassium channel gene in guard cells. Plant Physiol 109(2):371–374CrossRefGoogle Scholar
  34. Obata T, Kitamoto HK, Nakamura A, Fukuda A, Tanaka Y (2007) Rice Shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells. Plant Physiol 144(4):1978–1985CrossRefGoogle Scholar
  35. Papazian DM, Schwarz TL, Tempel BL, Jan YN, Jan LY (1987) Cloning of genomic and complementary-DNA from Shaker, a putative potassium channel gene from Drosophila. Science 237(4816):749–753. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Pilot G, Lacombe B, Gaymard F, Cherel I, Boucherez J, Thibaud JB, Sentenac H (2001) Guard cell inward K+ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. J Biol Chem 276(5):3215–3221CrossRefGoogle Scholar
  37. Pilot G, Gaymard F, Mouline K, Cherel I, Sentenac H (2003) Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol Biol 51(5):773–787. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Pratelli R, Lacombe B, Torregrosa L, Gaymard F, Romieu C, Thibaud J, Sentenac H (2002) A grapevine gene encoding a guard cell K+ channel displays developmental regulation in the grapevine berry. Plant Physiol 128(2):564–577CrossRefGoogle Scholar
  39. Qi Z, Spalding EP (2004) Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+-H+ antiporter during salinity stress. Plant Physiol 136(3):3849–3849CrossRefGoogle Scholar
  40. Qiao X, Li M, Li LT, Yin H, Wu JY, Zhang SL (2015) Genome-wide identification and comparative analysis of the heat shock transcription factor family in Chinese white pear (Pyrus bretschneideri) and five other Rosaceae species. BMC Plant Biol 15(1):12. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Reintanz B, Szyroki A, Ivashikina N, Ache P, Godde M, Becker D, Palme K, Hedrich R (2002) AtKC1, a silent Arabidopsis potassium channel α-subunit modulates root hair K+ influx. Proc Natl Acad Sci USA 99(6):4079–4084. CrossRefGoogle Scholar
  42. Roelfsema MRG, Hedrich R (2005) In the light of stomatal opening: new insights into ‘the Watergate’. New Phytol 167(3):665–691. CrossRefGoogle Scholar
  43. Sato A, Gambale F, Dreyer I, Uozumi N (2010) Modulation of the Arabidopsis KAT1 channel by an activator of protein kinase C in Xenopus laevis oocytes. FEBS J 277(10):2318–2328CrossRefGoogle Scholar
  44. Schachtman D, Schroeder J, Lucas W, Anderson J, Gaber R (1992) Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science 258(5088):1654–1658CrossRefGoogle Scholar
  45. Schroeder JI, Kwak JM, Allen GJ (2001) Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410(6826):327–330. CrossRefGoogle Scholar
  46. Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon JM, Gaymard F, Grignon C (1992) Cloning and expression in yeast of a plant potassium-ion transport-system. Science 256(5057):663–665. CrossRefGoogle Scholar
  47. Shabala S (2003) Regulation of potassium transport in leaves: from molecular to tissue level. Ann Bot Fenn 92(5):627–634CrossRefGoogle Scholar
  48. Starr TK, Jameson SC, Hogquist KA (2003) Positive and negative selection of T cells. Annu Rev Immunol 21:139–176. CrossRefGoogle Scholar
  49. Su H, Golldack D, Katsuhara M, Zhao CS, Bohnert HJ (2001) Expression and stress-dependent induction of potassium channel transcripts in the common ice plant. Plant Physiol 125(2):604–614. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Szczerba MW, Britto DT, Kronzucker HJ (2009) K+ transport in plants: physiology and molecular biology. J Plant Physiol 166(5):447–466. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Tang XD, Marten I, Dietrich P, Ivashikina N, Hedrich R, Hoshi T (2000) Histidine118 in the S2–S3 linker specifically controls activation of the KAT1 channel expressed in Xenopus oocytes. Biophys J 78:1255–1269CrossRefGoogle Scholar
  52. Tang HB, Wang XY, Bowers JE, Ming R, Alam M, Paterson AH (2008) Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res 18(12):1944–1954. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Thiel GB, Blatt MR (1991) The mechanism of ion permeation through K+-channels of stomatal guard cells: voltage-dependent block by Na+. J Plant Physiol 138(3):326–334. CrossRefGoogle Scholar
  54. Very AA, Sentenac H (2003) Molecular mechanisms and regulation of K+ transpoirt in higher plants. Annu Rev Plant Biol 54(1):575–603CrossRefGoogle Scholar
  55. Very AA, Gaymard F, Bosseux C, Sentenac H, Thibaud JB (1995) Expression of a cloned plant K+ channel in Xenopus oocytes: analysis of macroscopic currents. Plant J 7(2):321–332. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Very AA, Robinson MF, Mansfield TA, Sanders D (1998) Guard cell cation channels are involved in Na+-induced stomatal closure in a halophyte. Plant J 14(5):509–521. CrossRefGoogle Scholar
  57. Wang L, Yang SY, Guo MY, Huang YN, Sentenac H, Very AA, Su YH (2016) The S1-S2 linker determines the distinct pH sensitivity between ZmK2.1 and KAT1. Plant J 85(5):675–685. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Yang ZH (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Yang GZ, Sentenac H, Very AA, Su YH (2015) Complex interactions among residues within pore region determine the K+ dependence of a KAT1-type potassium channel AmKAT1. Plant J 83(3):401–412. CrossRefGoogle Scholar
  60. Zhang Y, Wang Z, Zhang L, Cao Y, Huang D, Tang K (2006) Molecular cloning and stress-dependent regulation of potassium channel gene in Chinese cabbage (Brassica rapa ssp. Pekinensis). J Plant Physiol 163(9):968–978CrossRefGoogle Scholar
  61. Zhang YD, Very AA, Wang LM, Deng YW, Sentenac H, Huang DF (2011) A K+ channel from salt-tolerant melon inhibited by Na+. New Phytol 189(3):856–868. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6(5):441–445. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Zimmermann S, Hartje S, Ehrhardt T, Plesch G, Mueller-Roeber B (2001) The K+ channel SKT1 is co-expressed with KST1 in potato guard cells - both channels can co-assemble via their conserved KT domains. Plant J 28(5):517–527. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Guodong Chen
    • 1
  • Qian Chen
    • 1
  • Kaijie Qi
    • 1
  • Zhihua Xie
    • 1
  • Hao Yin
    • 1
  • Peng Wang
    • 1
  • Runze Wang
    • 1
  • Zhi Huang
    • 1
  • Shaoling Zhang
    • 1
  • Li Wang
    • 1
    Email author
  • Juyou Wu
    • 1
    Email author
  1. 1.Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm EnhancementCollege of Horticulture, Nanjing Agricultural UniversityNanjingChina

Personalised recommendations