, Volume 250, Issue 5, pp 1757–1772 | Cite as

Gene isolation and structural characterization of a legume tree defensin with a broad spectrum of antimicrobial activity

  • Susana Rodríguez-Decuadro
  • Pablo D. Dans
  • María Alejandra Borba
  • Ana Maria Benko-Iseppon
  • Gianna CecchettoEmail author
Original Article


Main conclusion

The recombinant EcgDf1 defensin has an antimicrobial effect against both plant and human pathogens. In silico analyses predict that EcgDf1 is prone to form dimers capable of interacting with the membranes of microorganisms.


Plant defensins comprise a large family of antimicrobial peptides (AMP) with a wide range of biological functions. They are cysteine-rich molecules, highly sequence diverse but with a conserved and stable structure. In this work, a defensin gene (EcgDf1) was isolated from Erythrina crista-galli, a legume tree native from South America. The predicted peptide presents eight cysteines, with a γ-core motif GXCX3-9C and six cysteines distributed like the typical defensin αβ motif. The mature EcgDf1 coding sequence was heterologously expressed in Escherichia coli strains and purified by affinity chromatography. Possible dimer and oligomers of EcgDf1 were visible in SDS electrophoresis. Moreover, its 3D structure, determined by homology modeling, docking, and molecular dynamics simulations, was found to be compatible with the formation of homodimers between the β3 and β1-loop-α1, leaving the β2-loop-β3 free to interact with lipid membranes. The purified recombinant peptide inhibited the growth of several critical plant and human pathogens, like the opportunistic fungi Candida albicans and Aspergillus niger and the plant pathogens Clavibacter michiganensis ssp. michiganensis, Penicillium expansum, Botrytis cinerea, and Alternaria alternata. EcgDf1 is a promising candidate for the development of antimicrobial products for use in agriculture and medicine.


Antimicrobial peptides Dimerization Docking Erythrina crista-galli Heterologous expression Molecular dynamics simulation 



Antimicrobial peptides


Hours post-induction


Peptide concentration at which 50% inhibitions was reached





The authors thank CSIC (Comisión Sectorial de Investigación Científica, Universidad de la República, Uruguay), PEDECIBA (Programa de Desarrollo de las Ciencias Básicas, Uruguay), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil), and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil). The authors thank Dr. Rosario Durán and Madelón Portela for MALDI-TOFF analysis and Dr. Magdalena Vaio for flow cytometry analysis. SRD was supported by a doctoral fellowship from CSIC. IRB Barcelona is the recipient of a Severo Ochoa Award of Excellence from MINECO (Ministerio de Economía, Industria y Competitividad. Government of Spain). PDD and GC are PEDECIBA and SNI (Sistema Nacional de Investigadores, Uruguay) researchers.


This research was funded by CSIC (Comisión Sectorial de Investigación Científica, Universidad de la República, Uruguay) (Grant #267).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

425_2019_3260_MOESM1_ESM.pdf (744 kb)
Supplementary material 1 (PDF 744 kb)


  1. Berrocal-Lobo M, Segura A, Moreno M, López G, García-Olmedo F, Molina A (2002) Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection 1. Plant Physiol 128:951–961. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Broekaert WF, Terras F, Cammue BP, Vandedeyden J (1990) An automated quantitative assay for fungal growth inhibition. FEMS Microbiol Lett 69:55–60. CrossRefGoogle Scholar
  3. Broekaert WF, Terras FR, Cammue BP, Osborn RW (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol 108:1353–1358. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250. CrossRefPubMedGoogle Scholar
  5. Carvalho DO, Gomes VM (2009) Plant defensins-prospects for the biological functions and biotechnological properties. Peptides 30:1007–1020. CrossRefGoogle Scholar
  6. Carvalho ADO, Gomes VM (2011) Plant defensins and defensin-like peptides-biological activities and biotechnological applications. Curr Pharm Des 17:4270–4293. CrossRefGoogle Scholar
  7. Dans PD, Danilāne L, Ivani I, Dršata T, Lankaš F, Walther J, Illa Pujagut R, Battistini F, Gelpí JL, Lavery R, Orozco M (2016) Long-timescale dynamics of the Drew–Dickerson dodecamer. Nucl Acids Res 44:4052–4066. CrossRefPubMedGoogle Scholar
  8. de Beer A, Vivier MA (2011) Four plant defensins from an indigenous South African Brassicaceae species display divergent activities against two test pathogens despite high sequence similarity in the encoding genes. BMC Res Notes 4:459. CrossRefPubMedPubMedCentralGoogle Scholar
  9. De Coninck B, Cammue BPA, Thevissen K (2013) Modes of antifungal action and in planta functions of plant defensins and defensin-like peptides. Fungal Biol Rev 26:109–120. CrossRefGoogle Scholar
  10. Do HM, Lee SC, Jung HW, Sohn KH, Hwang BK (2004) Differential expression and in situ localization of a pepper defensin (CADEF1) gene in response to pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum. Plant Sci 166:1297–1305. CrossRefGoogle Scholar
  11. Doyle J (1991) DNA protocols for plants-CTAB total DNA isolation. In: Hewitt GM, Johnston A (eds) Molecular techniques in taxonomy. Springer, Berlin, pp 283–293CrossRefGoogle Scholar
  12. El-Mounadi K, Islam KT, Hernández-Ortiz P, Read ND, Shah DM (2016) Antifungal mechanisms of a plant defensin MtDef4 are not conserved between the ascomycete fungi Neurospora crassa and Fusarium graminearum. Mol Microbiol 100:542–559. CrossRefPubMedGoogle Scholar
  13. Estrada G, Garcia B, Schiavon E, Ortiz E, Cestèle S, Wanke E, Possani L, Corzo G (2007) Four disulfide-bridged scorpion beta neurotoxin CssII: heterologous expression and proper folding in vitro. Biochim Biophys Acta 1770:1161–1168. CrossRefPubMedGoogle Scholar
  14. Ferreira Lacerda A, Perseghini Del Sarto R, Santos Silva M, Rosas de Vasconcelos E, Ramos Coelho R, Olinto dos Santos V, Vieira Godoy C, Santos Seixas C, Mattar da Silva M, Grossi-de-Sa M (2016) The recombinant pea defensin Drr230a is active against impacting soybean and cotton pathogenic fungi from the genera Fusarium, Colletotrichum and Phakopsora. 3 Biotech 6:59. CrossRefGoogle Scholar
  15. Frohman MA, Dush MK, Martin GR (1988) Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci 85:8998–9002CrossRefGoogle Scholar
  16. Games PD, dos Santos IS, Mello ÉO, Diz MSS, Carvalho AO, de Souza-Filho GA, Da Cunha M, Vasconcelos IM, dos Ferreira BS, Gomes VM (2008) Isolation, characterization and cloning of a cDNA encoding a new antifungal defensin from Phaseolus vulgaris L. seeds. Peptides 29:2090–2100. CrossRefPubMedGoogle Scholar
  17. Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner M, Stark DM, Rommens CM (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol 18:1307–1310CrossRefGoogle Scholar
  18. Gentile F, Amodeo P, Febbraio F, Picaro F, Motta A, Formisano S, Nucci R (2002) SDS-resistant active and thermostable dimers are obtained from the dissociation of homotetrameric β-glycosidase from hyperthermophilic Sulfolobus solfataricus in SDS: stabilizing role of the A–C intermonomeric interface. J Biol Chem 277:44050–44060. CrossRefPubMedGoogle Scholar
  19. Guillen-Chable F, Arenas-Sosa I, Islas-flores I, Corzo G, Martinez-liu C, Estrada G (2017) Antibacterial activity and phospholipid recognition of the recombinant defensin J1-1 from Capsicum genus. Protein Expr Purif 136:45–51. CrossRefPubMedGoogle Scholar
  20. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  21. Hayes BM, Bleackley MR, Wiltshire JL, Anderson MA, Traven A, van der Weerden NL (2013) Identification and mechanism of action of the plant defensin NaD1 as a new member of the antifungal drug arsenal against Candida albicans. Antimicrob Agents Chemother 57:3667–3675. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hegedüs N, Marx F (2013) Antifungal proteins: more than antimicrobials? Fungal Biol Rev 26:132–145. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Herbel V, Schäfer H, Wink M (2015) Recombinant production of snakin-2 (an antimicrobial peptide from tomato) in E. coli and analysis of its bioactivity. Molecules 20:14889–14901. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kant P, Liu WZ, Pauls KP (2009) PDC1, a corn defensin peptide expressed in Escherichia coli and Pichia pastoris inhibits growth of Fusarium graminearum. Peptides 30:1593–1599. CrossRefPubMedGoogle Scholar
  25. Koike M, Okamoto T, Tsuda S, Imai R (2002) A novel plant defensin-like gene of winter wheat is specifically induced during cold acclimation. Biochem Biophys Res Commun 298:46–53. CrossRefPubMedGoogle Scholar
  26. Kovaleva V, Krynytskyy H, Gout I, Gout R (2011) Recombinant expression, affinity purification and functional characterization of Scots pine defensin 1. Appl Microbiol Biotechnol 89:1093–1101. CrossRefPubMedGoogle Scholar
  27. Kovalskaya N, Hammond RW (2009) Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins. Protein Expr Purif 63:12–17. CrossRefPubMedGoogle Scholar
  28. Lay FT, Anderson MA (2005) Defensins-components of the innate immune system in plants. Curr Protein Pept Sci 6:85–101. CrossRefPubMedGoogle Scholar
  29. Lay FT, Brugliera F, Anderson MA (2003) Isolation and properties of floral defensins from ornamental tobacco and petunia. Plant Physiol 131:1283–1293. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lay FT, Mills GD, Poon IKH, Cowieson NP, Kirby N, Baxter AA, Van Der Weerden NL, Dogovski C, Perugini MA, Anderson MA, Kvansakul M, Hulett MD (2012) Dimerization of plant defensin NaD1 enhances its antifungal activity. J Biol Chem 287:19961–19972. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Loureiro J, Rodriguez E, Doležel J, Santos C (2007) Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann Bot 100:875–888. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Manning M, Colón W (2004) Structural basis of protein kinetic stability: resistance to sodium dodecyl sulfate suggests a central role for rigidity and a bias toward β-sheet structure. Biochemistry 43:11248–11254. CrossRefPubMedGoogle Scholar
  33. Mello ÉDO, Santos IS, Carvalho ADO, de Souza LS, de Souza-filho GA, do Nascimento VV, Machado OL, Zottich U, Gomes VM (2014) Functional expression and activity of the recombinant antifungal defensin PvD1r from Phaseolus vulgaris L. (common bean) seeds. BMC Biochem 15:1–13. CrossRefGoogle Scholar
  34. Neill DA (1988) Experimental studies on species relationships in Erythrina (Leguminosae: Papilionoideae). Ann Mo Bot Gard 75:886–969CrossRefGoogle Scholar
  35. Osborn RW, De Samblanx GW, Thevissen K, Goderis I, Torrekens S, Van Leuven F, Attenborough S, Rees SB, Broekaert WF (1995) Isolation and characterization of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett 368:257–262. CrossRefPubMedGoogle Scholar
  36. Padovan L, Segat L, Tossi A, Calsa T, Ederson AK, Brandao L, Guimarães RL, Pandolfi V, Pestana-Calsa MC, Belarmino LC, Benko-Iseppon AM, Crovella S (2010) Characterization of a new defensin from cowpea (Vigna unguiculata (L.) Walp.). Protein Pept Lett 17:297–304. CrossRefPubMedGoogle Scholar
  37. Parisi K, Shafee TMA, Quimbar P, Van Der Weerden NL, Bleackley MR, Anderson MA (2018) The evolution, function and mechanisms of action for plant defensins. Semin Cell Dev Biol 88:107–118. CrossRefPubMedGoogle Scholar
  38. Poon IKH, Baxter AA, Lay FT, Mills GD, Adda CG, Payne JAE, Phan TK, Ryan GF, White JA, Veneer PK, van der Weerden NL, Anderson MA, Kvansakul M, Hulettet MD (2014) Phosphoinositide-mediated oligomerization of a defensin induces cell lysis. Elife 3:1–27. CrossRefGoogle Scholar
  39. Portieles R, Rodriguez M, Castillo J, Pujol M, Enriquez G, Borroto C, Trujillo L, Thomma BPHJ, Borras-Hidalgo O (2010) NmDef02, a novel antimicrobial gene isolated from Nicotiana megalosiphon confers high-level pathogen resistance under greenhouse and field conditions. Plant Biotechnol J 8:678–690. CrossRefPubMedGoogle Scholar
  40. Rath A, Glibowicka M, Nadeau VG, Chen G, Deber CM (2009) Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Natl Acad Sci USA 106:1760–1765. CrossRefPubMedGoogle Scholar
  41. Rodríguez-Decuadro S, Dans PD, Benko-iseppon AM, Cecchetto G (2018) Antimicrobial and structural insights of a new snakin-like peptide isolated from Peltophorum dubium (Fabaceae). Amino Acids 50:1245–1259. CrossRefPubMedGoogle Scholar
  42. Sagaram US, El-Mounadi K, Buchko GW, Berg HR, Kaur J, Pandurangi RS, Smith TJ, Shah DM (2013) Structural and functional studies of a phosphatidic acid-binding antifungal plant defensin MtDef4: identification of an RGFRRR motif governing fungal cell entry. PLoS One 8:1–22. CrossRefGoogle Scholar
  43. Sathoff AE, Samac DA (2019) Antibacterial activity of plant defensins. Mol Plant Microbe Interact 32:507–514. CrossRefPubMedGoogle Scholar
  44. Schägger G, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 379:368–379. CrossRefGoogle Scholar
  45. Sels J, Mathys J, De Coninck BMA, Cammue BPA, De Bolle MFC (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46:941–950. CrossRefPubMedGoogle Scholar
  46. Shafee TMA, Lay FT, Phan TK, Anderson MA, Hulett MD (2017) Convergent evolution of defensin sequence, structure and function. Cell Mol Life Sci 74:663–682. CrossRefPubMedGoogle Scholar
  47. Shenkarev ZO, Gizatullina AK, Finkina EI, Alekseeva EA, Balandin SV, Mineev KS, Arseniev AS, Ovchinnikova TV (2014) Heterologous expression and solution structure of defensin from Lens culinaris. Biochem Biophys Res Commun 451:252–257. CrossRefPubMedGoogle Scholar
  48. Shi Y, Mowery RA, Ashley J, Hentz M, Ramirez AJ, Bilgicer B, Slunt-brown H, Borchelt DR, Shaw BF (2012) Abnormal SDS-PAGE migration of cytosolic proteins can identify domains and mechanisms that control surfactant binding. Protein Sci 21:1197–1209. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Silverstein KAT, Graham MA, Paape TD, VandenBosch KA (2005) Genome organization of more than 300 defensin-like genes in Arabidopsis. Plant Physiol 138:600–610. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Simoes CMO, Faikenberg M, Mentz LA, Schenkef EP, Amoros M, Girre L (1999) Antiviral activity of South Brazilian medicinal plant extracts. Phytomedicine 6:205–214. CrossRefPubMedGoogle Scholar
  51. Slavokhotova AA, Odintsova TI, Rogozhin EA, Musolyamov AK, Andreev YA, Grishin EV, Egorov TA (2011) Isolation, molecular cloning and antimicrobial activity of novel defensins from common chickweed (Stellaria media L.) seeds. Biochimie 93:450–456. CrossRefPubMedGoogle Scholar
  52. Song X, Zhang M, Zhou Z, Gong W (2011) Ultra-high resolution crystal structure of a dimeric defensin SPE10. FEBS Lett 585:300–306. CrossRefPubMedGoogle Scholar
  53. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods research resource. Mol Biol Evol 28:2731–2739. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Thevissen K, Kristensen H, Thomma BPHJ, Cammue BPA, Francois IEJA (2007) Therapeutic potential of antifungal plant and insect defensins. Drug Discov Today 12:966–971. CrossRefPubMedGoogle Scholar
  55. Thomma BPHJ, Cammue BPA, Thevissen K (2002) Plant defensins. Planta 216:193–202. CrossRefPubMedGoogle Scholar
  56. Torrent M, Di Tommaso P, Pulido D, Nogués MV, Notredame C, Boix E, Andreu D (2012) AMPA: an automated web server for prediction of protein antimicrobial regions. Bioinformatics 28:130–131. CrossRefPubMedGoogle Scholar
  57. Van Den Ent F, Löwe J (2006) RF cloning: a restriction-free method for inserting target genes into plasmids. J Biochem Bioph Meth 67:67–74CrossRefGoogle Scholar
  58. van Zunder GCP, Rodrigues JPGLM, Trellet M, Schmitz C, Kastritis PL, Karaca E, Melquiond ASJ, van Dijk M, de Vries SJ, Bonvin AMJJ (2016) The HADDOCK 2.2 webserver: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 428:720–725. CrossRefGoogle Scholar
  59. Waghu FH, Barai RS, Gurung P, Idicula-thomas S (2016) CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res 44:1094–1097. CrossRefGoogle Scholar
  60. Webb B, Sali A (2014) Comparative protein structure modeling using modeller. Curr Protoc Bioinform. CrossRefGoogle Scholar
  61. Yount NY, Yeaman MR (2004) Multidimensional signatures in antimicrobial peptides. Proc Natl Acad Sci USA 101:7363–7368. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Biología Vegetal, Facultad de AgronomíaUniversidad de la RepúblicaMontevideoUruguay
  2. 2.Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and TechnologyBarcelonaSpain
  3. 3.Joint BSC-IRB Research Program in Computational BiologyBarcelonaSpain
  4. 4.Departamento de Biociencias, Facultad de QuímicaUniversidad de la RepúblicaMontevideoUruguay
  5. 5.Universidade Federal de Pernambuco, Centro de BiociênciasRecifeBrazil
  6. 6.Instituto de Química Biológica, Facultad de Ciencias-Facultad de QuímicaUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations