Advertisement

Planta

, Volume 250, Issue 5, pp 1613–1620 | Cite as

The gibberellin 13-oxidase that specifically converts gibberellin A9 to A20 in Tripterygium wilfordii is a 2-oxoglutarate-dependent dioxygenase

  • Yifeng Zhang
  • Ping Su
  • Xiaoyi Wu
  • Jiawei Zhou
  • Yujun Zhao
  • Tianyuan Hu
  • Yuru Tong
  • Luqi HuangEmail author
  • Wei GaoEmail author
Original Article
  • 125 Downloads

Abstract

Main conclusion

A novel GA13-oxidase ofTripterygium wilfordii, TwGA13ox, is a 2-oxoglutarate-dependent dioxygenase. It specifically catalyzes the conversion of GA9to GA20, but not GA4to GA1.

Abstract

Gibberellins (GAs) play essential roles in plant growth and development. Previous characterization of GA20- and GA3-oxidases yielded a large number of genetic elements that can interconvert different GAs. However, enzymes that catalyze the 13-hydroxylation step are rarely identified. Here, we report that the GA13-oxidase of Tripterygium wilfordii, TwGA13ox, is a 2-oxoglutarate-dependent dioxygenase instead of reported cytochrome P450 oxygenases, among 376 differential proteins in comparative proteomics. Phylogenetic analysis showed that the enzyme resides in its own independent branch in the DOXC class. Unexpectedly, it specifically catalyzes the conversion of GA9 to GA20, but not GA4 to GA1. Contrary to the previous research, TwGA13ox transcriptional expression was upregulated ~ 146 times by exogenous application of methyl jasmonate (MeJA). RNAi targeting of TwGA13ox in T. wilfordii led to an 89.9% decrease of triptolide, a diterpenoid epoxide with extensive anti-inflammatory and anti-tumor properties. In subsequent MeJA supplementation experiments, triptolide production increased 13.4-times. TwGA13ox displayed root-specific expression. Our results provide a new GA13-oxidase from plants and elucidate the metabolic associations within the diterpenoid biosynthetic pathway (GAs, triptolide) at the genetic level.

Keywords

2-Oxoglutarate-dependent dioxygenase Tripterygium wilfordii Gibberellin 13-oxidase Triptolide 

Notes

Author contribution statement

YZ, WG, and LH designed the experiments. YZ, PS, JZ, YZ, and TH performed the experiments. YZ and XW analyzed the data. YZ and WG wrote the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Supplementary material

425_2019_3240_MOESM1_ESM.docx (988 kb)
Supplementary material 1 (DOCX 989 kb)

References

  1. Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20(8):2117–2129.  https://doi.org/10.1105/tpc.108.058941 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Appleford NE, Evans DJ, Lenton JR, Gaskin P, Croker SJ, Devos KM, Phillips AL, Hedden P (2006) Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat. Planta 223(3):568–582.  https://doi.org/10.1007/s00425-005-0104-0 CrossRefPubMedGoogle Scholar
  3. Daviere JM, Achard P (2013) Gibberellin signaling in plants. Development 140(6):1147–1151.  https://doi.org/10.1242/dev.087650 CrossRefPubMedGoogle Scholar
  4. Hansen NL, Heskes AM, Hamberger B, Olsen CE, Hallstrom BM, Andersen-Ranberg J, Hamberger B (2017) The terpene synthase gene family in Tripterygium wilfordii harbors a labdane-type diterpene synthase among the monoterpene synthase TPS-b subfamily. Plant J 89(3):429–441.  https://doi.org/10.1111/tpj.13410 CrossRefPubMedGoogle Scholar
  5. Hou X, Lee LY, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 19(6):884–894.  https://doi.org/10.1016/j.devcel.2010.10.024 CrossRefPubMedGoogle Scholar
  6. Kai K, Mizutani M, Kawamura N, Yamamoto R, Tamai M, Yamaguchi H, Sakata K, Shimizu B (2010) Scopoletin is biosynthesized via ortho -hydroxylation of feruloyl CoA by a 2-oxoglutarate-dependent dioxygenase in Arabidopsis thaliana. Plant J 55(6):989–999CrossRefGoogle Scholar
  7. Kawai Y, Ono E, Mizutani M (2014) Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants. Plant J 78(2):328–343.  https://doi.org/10.1111/tpj.12479 CrossRefPubMedGoogle Scholar
  8. Kliebenstein DJ, Lambrix VM, Reichelt M, Gershenzon J, Mitchell-Olds T (2001) Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell 13(3):681–693PubMedPubMedCentralGoogle Scholar
  9. Kobayashi M, Yoshizawa K, Sakurai A, Nakamura T (1996) Analysis of endogenous gibberellins and abscisic acid in vegetative shoots of normal and Weeping Japanese Cherry (Prunus spachiana). J Agric Chem Soc Jpn 60(1):159–160Google Scholar
  10. Laule O, Fürholz A, Chang HS, Zhu T, Wang X, Heifetz PB, Gruissem W, Lange M (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 100(11):6866–6871CrossRefGoogle Scholar
  11. MacMillan J (2001) Occurrence of gibberellins in vascular plants, fungi, and bacteria. J Plant Growth Regul 20(4):387–442.  https://doi.org/10.1007/s003440010038 CrossRefPubMedGoogle Scholar
  12. Magome H, Nomura T, Hanada A, Takeda-Kamiya N, Ohnishi T, Shinma Y, Katsumata T, Kawaide H, Kamiya Y, Yamaguchi S (2013) CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice. Proc Natl Acad Sci USA 110(5):1947–1952.  https://doi.org/10.1073/pnas.1215788110 CrossRefPubMedGoogle Scholar
  13. Newman JD, Chappell J (1999) Isoprenoid biosynthesis in plants: carbon partitioning within the cytoplasmic pathway. Crit Rev Biochem Mol Biol 34(2):95–106CrossRefGoogle Scholar
  14. Pimenta Lange MJ, Liebrandt A, Arnold L, Chmielewska SM, Felsberger A, Freier E, Heuer M, Zur D, Lange T (2013) Functional characterization of gibberellin oxidases from cucumber, Cucumis sativus L. Phytochemistry 90:62–69.  https://doi.org/10.1016/j.phytochem.2013.02.006 CrossRefPubMedGoogle Scholar
  15. Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295(Pt 2):517CrossRefGoogle Scholar
  16. Shigenaga AM, Berens ML, Tsuda K, Argueso CT (2017) Towards engineering of hormonal crosstalk in plant immunity. Curr Opin Plant Biol 38:164–172CrossRefGoogle Scholar
  17. Su P, Cheng Q, Wang X, Cheng X, Zhang M, Tong Y, Li F, Gao W, Huang L (2014) Characterization of eight terpenoids from tissue cultures of the Chinese herbal plant, Tripterygium wilfordii, by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Biomed Chromatogr 28(9):1183–1192CrossRefGoogle Scholar
  18. Su P, Guan H, Zhao Y, Tong Y, Xu M, Zhang Y, Hu T, Jian Y, Cheng Q, Gao L (2017a) Identification and functional characterization of diterpene synthases for triptolide biosynthesis from Tripterygium wilfordii. Plant J 93:50–65CrossRefGoogle Scholar
  19. Su P, Guan H, Zhang Y, Wang X, Gao L, Zhao Y, Hu T, Zhou J, Ma B, Tu L, Tong Y, Huang L, Gao W (2017b) Probing the single key amino acid responsible for the novel catalytic function of ent-kaurene oxidase supported by NADPH-cytochrome P450 reductases in Tripterygium wilfordii. Front Plant Sci 8:1756.  https://doi.org/10.3389/fpls.2017.01756 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Vialart G, Hehn A, Olry A, Ito K, Krieger C, Larbat R, Paris C, Shimizu B, Sugimoto Y, Mizutani M (2012) A 2-oxoglutarate-dependent dioxygenase from Ruta graveolens L. exhibits p-coumaroyl CoA 2′-hydroxylase activity (C2′H): a missing step in the synthesis of umbelliferone in plants. Plant J 70(3):460–470CrossRefGoogle Scholar
  21. Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251.  https://doi.org/10.1146/annurev.arplant.59.032607.092804 CrossRefPubMedGoogle Scholar
  22. Zhang M, Su P, Zhou YJ, Wang XJ, Zhao YJ, Liu YJ, Tong YR, Hu TY, Huang LQ, Gao W (2015) Identification of geranylgeranyl diphosphate synthase genes from Tripterygium wilfordii. Plant Cell Rep 34(12):2179–2188.  https://doi.org/10.1007/s00299-015-1860-3 CrossRefPubMedGoogle Scholar
  23. Zhang Y, Zhao Y, Wang J, Hu T, Tong Y, Zhou J, Song Y, Gao W, Huang L (2018) Overexpression and RNA interference of TwDXR regulate the accumulation of terpenoid active ingredients in Tripterygium wilfordii. Biotechnol Lett 40(2):419–425.  https://doi.org/10.1007/s10529-017-2484-1 CrossRefPubMedGoogle Scholar
  24. Zhao Y, Zhang Y, Su P, Yang J, Huang L, Gao W (2017) Genetic transformation system for woody plant Tripterygium wilfordii and its application to product natural celastrol. Front Plant Sci 8:2221.  https://doi.org/10.3389/fpls.2017.02221 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yifeng Zhang
    • 1
    • 2
  • Ping Su
    • 3
  • Xiaoyi Wu
    • 1
  • Jiawei Zhou
    • 1
    • 2
  • Yujun Zhao
    • 3
  • Tianyuan Hu
    • 1
    • 2
  • Yuru Tong
    • 3
    • 4
  • Luqi Huang
    • 3
    Email author
  • Wei Gao
    • 1
    • 2
    • 5
    Email author
  1. 1.School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
  2. 2.School of Pharmaceutical SciencesCapital Medical UniversityBeijingChina
  3. 3.State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia MedicaChinese Academy of Chinese Medical SciencesBeijingChina
  4. 4.School of Traditional Chinese Materia MedicaShenyang Pharmaceutical UniversityShenyangChina
  5. 5.Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina

Personalised recommendations