Advertisement

Planta

pp 1–13 | Cite as

Three Camellia sinensis glutathione S-transferases are involved in the storage of anthocyanins, flavonols, and proanthocyanidins

  • Yajun Liu
  • Han Jiang
  • Yue Zhao
  • Xin Li
  • Xinlong Dai
  • Juhua Zhuang
  • Mengqing Zhu
  • Xiaolan Jiang
  • Peiqiang Wang
  • Liping GaoEmail author
  • Tao XiaEmail author
Original Article

Abstract

Main conclusion

Biochemical, transgenic, and genetic complementation data demonstrate that three glutathione S-transferases are involved in the storage of anthocyanins, flavonols, and proanthocyanins in plant cells.

Abstract

Flavonoids are compounds in tea (Camellia sinensis) that confer the characteristic astringent taste of tea beverages; these compounds have numerous benefits for human health. In plant cells, flavonoids are synthesized in different locations within the cytoplasm and are then transported and finally stored in vacuoles. To date, the mechanism involved in the intracellular transport of flavonoids in tea has not been well elucidated. In this study, we report the functional characterization of three cDNAs encoding glutathione S-transferases (CsGSTs) of C. sinensis, namely, CsGSTa, CsGSTb, and CsGSTc. The expression profiles of CsGSTa and CsGSTb were positively correlated with the accumulation of flavonols, anthocyanins and proanthocyanins in tea tissues and cultivars. These three recombinant CsGSTs showed a high affinity for flavonols (kaempferol-3-O-glucoside and quercetin-3-O-glucoside) and anthocyanin (cyanidin-3-O-glucoside) in vitro but had no or weak affinity for epicatechin. In vivo, CsGSTa, CsGSTb and CsGSTc fully or partially restored the storage of anthocyanins and proanthocyanidins in transgenic tt19 mutants. Metabolic profiling revealed that the contents of anthocyanins, flavonols, and proanthocyanidins were increased in the transgenic petals of Nicotiana tabacum. Taken together, all data showed that CsGSTa, CsGSTb, and CsGSTc are associated with the storage of anthocyanins, flavonols, and proanthocyanins in C. sinensis cells.

Keywords

Camellia sinensis Glutathione S-transferase Flavonoids Fluorescence quenching Equilibrium dissociation constant 

Notes

Acknowledgements

This work was supported by National Key Research and Development Program of China (2018YFD1000601), the Natural Science Foundation of China (31870677, 31870676, 31570694, 31470689), the Collegiate Natural Science Foundation of Anhui Province (03087060).

Supplementary material

425_2019_3206_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1635 kb)

References

  1. Akbar SM, Sreeramulu K, Sharma HC (2016) Tryptophan fluorescence quenching as a binding assay to monitor protein conformation changes in the membrane of intact mitochondria. J Bioenerg Biomembr 48(3):241–247.  https://doi.org/10.1007/s10863-016-9653-0 CrossRefGoogle Scholar
  2. Alfenito MR, Souer E, Goodman CD, Buell R, Mol J, Koes R, Walbot V (1998) Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell 10(7):1135–1149CrossRefGoogle Scholar
  3. Axarli I, Muleta AW, Vlachakis D, Kossida S, Kotzia G, Maltezos A, Dhavala P, Papageorgiou AC, Labrou NE (2016) Directed evolution of Tau class glutathione transferases reveals a site that regulates catalytic efficiency and masks co-operativity. Biochem J 473:559–570.  https://doi.org/10.1042/Bj20150930 CrossRefGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254.  https://doi.org/10.1006/abio.1976.9999 CrossRefGoogle Scholar
  5. Cai XT, Xu P, Zhao PX, Liu R, Yu LH, Xiang CB (2014) Arabidopsis ERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation. Nat Commun.  https://doi.org/10.1038/ncomms6833 Google Scholar
  6. Conn S, Curtin C, Bezier A, Franco C, Zhang W (2008) Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. J Exp Bot 59(13):3621–3634.  https://doi.org/10.1093/jxb/ern217 CrossRefGoogle Scholar
  7. Conn S, Franco C, Zhang W (2010) Characterization of anthocyanic vacuolar inclusions in Vitis vinifera L. cell suspension cultures. Planta 231(6):1343–1360.  https://doi.org/10.1007/s00425-010-1139-4 CrossRefGoogle Scholar
  8. Dixon DP, Edwards R (2010) Glutathione transferases. Arabidopsis Book 8:e0131.  https://doi.org/10.1199/tab.0131 CrossRefGoogle Scholar
  9. Dixon DP, Davis BG, Edwards R (2002) Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol Chem 277(34):30859–30869.  https://doi.org/10.1074/jbc.m202919200 CrossRefGoogle Scholar
  10. Edwards R, Dixon DP, Walbot V (2000) Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci 5(5):193–198.  https://doi.org/10.1016/S1360-1385(00)01601-0 CrossRefGoogle Scholar
  11. Gomez C, Conejero G, Torregrosa L, Cheynier V, Terrier N, Ageorges A (2011) In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST. Plant J 67(6):960–970.  https://doi.org/10.1111/j.1365-313X.2011.04648.x CrossRefGoogle Scholar
  12. Han XM, Yang ZL, Liu YJ, Yang HL, Zeng QY (2018) Genome-wide profiling of expression and biochemical functions of the Medicago glutathione S-transferase gene family. Plant Physiol Biochem 126:126–133.  https://doi.org/10.1016/j.plaphy.2018.03.004 CrossRefGoogle Scholar
  13. Huang RN, Zhang SX, Pan LL, Li J, Liu F, Liu HJ (2013) Spectroscopic studies on the interactions between imidazolium chloride ionic liquids and bovine serum albumin. Spectrochim Acta A 104:377–382.  https://doi.org/10.1016/j.saa.2012.11.087 CrossRefGoogle Scholar
  14. Jiang X, Liu Y, Li W, Zhao L, Meng F, Wang Y, Tan H, Yang H, Wei C, Wan X, Gao L, Xia T (2013) Tissue-specific, development-dependent phenolic compounds accumulation profile and gene expression pattern in tea plant [Camellia sinensis]. PLoS One 8(4):e62315.  https://doi.org/10.1371/journal.pone.0062315 CrossRefGoogle Scholar
  15. Justyna M, Kamil K, Anna K (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19(10):16240–16265.  https://doi.org/10.3390/molecules191016240 CrossRefGoogle Scholar
  16. Kathiravan A, Chandramohan M, Renganathan R, Sekar S (2009) Spectroscopic studies on the interaction between phycocyanin and bovine serum albumin. J Mol Struct 919(1–3):210–214.  https://doi.org/10.1016/j.molstruc.2008.09.005 CrossRefGoogle Scholar
  17. Kitamura S, Shikazono N, Tanaka A (2004) TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J 37(1):104–114.  https://doi.org/10.1046/j.1365-313X.2003.01943.x CrossRefGoogle Scholar
  18. Kitamura S, Akita Y, Ishizaka H, Narumi I, Tanaka A (2012) Molecular characterization of an anthocyanin-related glutathione S-transferase gene in cyclamen. J Plant Physiol 169(6):636–642.  https://doi.org/10.1016/j.jplph.2011.12.011 CrossRefGoogle Scholar
  19. Labrou NE, Papageorgiou AC, Pavli O, Flemetakis E (2015) Plant GSTome: structure and functional role in xenome network and plant stress response. Curr Opin Biotechnol 32:186–194.  https://doi.org/10.1016/j.copbio.2014.12.024 CrossRefGoogle Scholar
  20. Li XA, Gao P, Cui DJ, Wu LM, Parkin I, Saberianfar R, Menassa R, Pan HY, Westcott N, Gruber MY (2011) The Arabidopsis tt19-4 mutant differentially accumulates proanthocyanidin and anthocyanin through a 3′ amino acid substitution in glutathione S-transferase. Plant Cell Environ 34(3):374–388.  https://doi.org/10.1111/j.1365-3040.2010.02249.x CrossRefGoogle Scholar
  21. Licciardello C, D’Agostino N, Traini A, Recupero GR, Frusciante L, Chiusano ML (2014) Characterization of the glutathione S-transferase gene family through ESTs and expression analyses within common and pigmented cultivars of Citrus sinensis (L.) Osbeck. Bmc Plant Biol.  https://doi.org/10.1186/1471-2229-14-39 Google Scholar
  22. Liu YJ, Han XM, Ren LL, Yang HL, Zeng QY (2013) Functional divergence of the glutathione S-transferase supergene family in Physcomitrella patens reveals complex patterns of large gene family evolution in land plants. Plant Physiol 161(2):773–786.  https://doi.org/10.1104/pp.112.205815 CrossRefGoogle Scholar
  23. Luo H, Dai C, Li Y, Feng J, Liu Z, Kang C (2018) Reduced anthocyanins in Petioles codes for a GST anthocyanin transporter that is essential for the foliage and fruit coloration in strawberry. J Exp Bot 69(10):2595–2608.  https://doi.org/10.1093/jxb/ery096 CrossRefGoogle Scholar
  24. Marrs KA, Alfenito MR, Lloyd AM, Walbot V (1995) A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375(6530):397–400.  https://doi.org/10.1038/375397a0 CrossRefGoogle Scholar
  25. Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47.  https://doi.org/10.1017/jns.2016.41 CrossRefGoogle Scholar
  26. Pang Y, Peel GJ, Wright E, Wang Z, Dixon RA (2007) Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula. Plant Physiol 145(3):601–615.  https://doi.org/10.1104/pp.107.107326 CrossRefGoogle Scholar
  27. Pegeot H, Koh CS, Petre B, Mathiot S, Duplessis S, Hecker A, Didierjean C, Rouhier N (2014) The poplar Phi class glutathione transferase: expression, activity and structure of GSTF1. Front Plant Sci 5:712.  https://doi.org/10.3389/fpls.2014.00712 Google Scholar
  28. Perez-Diaz R, Madrid-Espinoza J, Salinas-Cornejo J, Gonzalez-Villanueva E, Ruiz-Lara S (2016) Differential Roles for VviGST1, VviGST3, and VviGST4 in proanthocyanidin and anthocyanin transport in Vitis vinifera. Front Plant Sci 7:1166.  https://doi.org/10.3389/fpls.2016.01166 CrossRefGoogle Scholar
  29. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45CrossRefGoogle Scholar
  30. Pourcel L, Irani NG, Lu Y, Riedl K, Schwartz S, Grotewold E (2010) The formation of anthocyanic vacuolar inclusions in Arabidopsis thaliana and implications for the sequestration of anthocyanin pigments. Mol Plant 3(1):78–90.  https://doi.org/10.1093/mp/ssp071 CrossRefGoogle Scholar
  31. Poustka F, Irani NG, Feller A, Lu Y, Pourcel L, Frame K, Grotewold E (2007) A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting route in Arabidopsis and contributes to the formation of vacuolar inclusions. Plant Physiol 145(4):1323–1335.  https://doi.org/10.1104/pp.107.105064 CrossRefGoogle Scholar
  32. Sappl PG, Carroll AJ, Clifton R, Lister R, Whelan J, Harvey Millar A, Singh KB (2009) The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. Plant J 58(1):53–68.  https://doi.org/10.1111/j.1365-313X.2008.03761.x CrossRefGoogle Scholar
  33. Scharbert S, Hofmann T (2005) Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments. J Agric Food Chem 53(13):5377–5384.  https://doi.org/10.1021/jf050294d CrossRefGoogle Scholar
  34. Soranzo N, Sari Gorla M, Mizzi L, De Toma G, Frova C (2004) Organisation and structural evolution of the rice glutathione S-transferase gene family. Mol Gene Genom 271(5):511–521.  https://doi.org/10.1007/s00438-004-1006-8 CrossRefGoogle Scholar
  35. Ting L, Zhi-Ling Y, Xue Y, Yan-Jing L, Xiao-Ru W, Qing-Yin Z (2009) Extensive functional diversification of the Populus glutathione S-transferase supergene family. Plant Cell 21(12):3749–3766.  https://doi.org/10.1105/tpc.109.070219 CrossRefGoogle Scholar
  36. Wang PQ, Zhang LJ, Jiang XL, Dai XL, Xu LJ, Li T, Xing DW, Li YZ, Li MZ, Gao LP, Xia T (2018a) Evolutionary and functional characterization of leucoanthocyanidin reductases from Camellia sinensis. Planta 247(1):139–154.  https://doi.org/10.1007/s00425-017-2771-z CrossRefGoogle Scholar
  37. Wang WZ, Zhou YH, Wu YL, Dai XL, Liu YJ, Qian YM, Li MZ, Jiang XL, Wang YS, Gao LP, Xia T (2018b) Insight into catechins metabolic pathways of Camellia sinensis based on genome and transcriptome analysis. J Agric Food Chem 66(16):4281–4293.  https://doi.org/10.1021/acs.jafc.8b00946 CrossRefGoogle Scholar
  38. Xie DY, Dixon RA (2005) Proanthocyanidin biosynthesis–still more questions than answers? Phytochemistry 66(18):2127–2144.  https://doi.org/10.1016/j.phytochem.2005.01.008 CrossRefGoogle Scholar
  39. Xu YQ, Zhang YN, Chen JX, Wang F, Du QZ, Yin JF (2018) Quantitative analyses of the bitterness and astringency of catechins from green tea. Food Chem 258:16–24.  https://doi.org/10.1016/j.foodchem.2018.03.042 CrossRefGoogle Scholar
  40. Yamazaki M, Shibata M, Nishiyama Y, Springob K, Kitayama M, Shimada N, Aoki T, Ayabe S, Saito K (2008) Differential gene expression profiles of red and green forms of Perilla frutescens leading to comprehensive identification of anthocyanin biosynthetic genes. FEBS J 275(13):3494–3502.  https://doi.org/10.1111/j.1742-4658.2008.06496.x CrossRefGoogle Scholar
  41. Yan Jing L, Xue Min H, Lin Ling R, Hai Ling Y, Qing Yin Z (2013) Functional divergence of the glutathione S-transferase supergene family in Physcomitrella patens reveals complex patterns of large gene family evolution in land plants. Plant Physiol 161(2):773–786.  https://doi.org/10.1104/pp.112.205815 CrossRefGoogle Scholar
  42. Zhao J (2015) Flavonoid transport mechanisms: how to go, and with whom. Trends Plant Sci 20(9):576–585.  https://doi.org/10.1016/j.tplants.2015.06.007 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yajun Liu
    • 1
    • 2
  • Han Jiang
    • 2
  • Yue Zhao
    • 2
  • Xin Li
    • 1
  • Xinlong Dai
    • 2
  • Juhua Zhuang
    • 2
  • Mengqing Zhu
    • 1
  • Xiaolan Jiang
    • 2
  • Peiqiang Wang
    • 2
  • Liping Gao
    • 1
    Email author
  • Tao Xia
    • 2
    Email author
  1. 1.School of Life ScienceAnhui Agricultural UniversityHefeiChina
  2. 2.State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefeiChina

Personalised recommendations