Advertisement

Planta

pp 1–22 | Cite as

Rust pathogen effectors: perspectives in resistance breeding

  • Pramod Prasad
  • Siddanna Savadi
  • S. C. BhardwajEmail author
  • O. P. Gangwar
  • Subodh Kumar
Review

Abstract

Main conclusion

Identification and functional characterization of plant pathogen effectors promise to ameliorate future research and develop effective and sustainable strategies for controlling or containing crop diseases.

Wheat is the second most important food crop of the world after rice. Rust pathogens, one of the major biotic stresses in wheat production, are capable of threatening the world food security. Understanding the molecular basis of plant–pathogen interactions is essential for devising novel strategies for resistance breeding and disease management. Now, it has been established that effectors, the proteins secreted by pathogens, play a key role in plant–pathogen interactions. Therefore, effector biology has emerged as one of the most important research fields in plant biology. Recent advances in genomics and bioinformatics have allowed identification of a large repertoire of candidate effectors, while the evolving high-throughput tools have continued to assist in their functional characterization. The repertoires of effectors have become an important resource for better understanding of effector biology of pathosystems and resistance breeding of crop plants. In recent years, a significant progress has been made in the field of rust effector biology. This review describes the recent advances in effector biology of obligate fungal pathogens, identification and functional analysis of wheat rust pathogens effectors and the potential applications of effectors in molecular plant biology and rust resistance breeding in wheat.

Keywords

Effectors HIGS NHR Puccinia R genes S genes Wheat 

Notes

References

  1. Ali S, Laurie JD, Linning R, Cervantes-Chavez JA, Gaudet D, Bakkeren G (2014) An immunity-triggering effector from the Barley smut fungus Ustilago hordei resides in an Ustilaginaceae-specific cluster bearing signs of transposable element-assisted evolution. PLoS Pathog 10:e1004223.  https://doi.org/10.1371/journal.ppat.1004223 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arazoe T, Miyoshi K, Yamato T, Ogawa T, Ohsato S, Arie T, Kuwata S (2015) Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol Bioeng 112:2543–2549CrossRefPubMedGoogle Scholar
  3. Arora S, Steuernagel B et al (2019) Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat Biotechnol 37:139–143CrossRefPubMedGoogle Scholar
  4. Ayliffe M, Devilla R et al (2011a) Nonhost resistance of rice to rust pathogens. Mol Plant Microbe Interact 24(10):1143–1155CrossRefPubMedGoogle Scholar
  5. Ayliffe M, Jin Y et al (2011b) Determining the basis of nonhost resistance in rice to cereal rusts. Euphytica 179:33–40CrossRefGoogle Scholar
  6. Bai Y, Pavan S et al (2008) Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of Mlo function. Mol Plant Microbe Interact 21(1):30–39CrossRefPubMedGoogle Scholar
  7. Bai S, Liu J et al (2012) Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance. PLoS Pathog 8(6):e1002752CrossRefPubMedPubMedCentralGoogle Scholar
  8. Beck M, Heard W et al (2012) The INs and OUTs of pattern recognition receptors at the cell surface. Curr Opin Plant Biol 15:367–374CrossRefPubMedGoogle Scholar
  9. Berger S, Benediktyova Z et al (2007) Visualization of dynamics of plant–pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana. J Exp Bot 58:797–806CrossRefPubMedGoogle Scholar
  10. Bozkurt TO, Schornack S et al (2011) Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. Proc Natl Acad Sci USA 108:20832–20837CrossRefPubMedGoogle Scholar
  11. Bruce M, Neugebauer KA et al (2014) Using transcription of six Puccinia triticina races to identify the effective secretome during infection of wheat. Front Plant Sci 4:520CrossRefPubMedPubMedCentralGoogle Scholar
  12. Büschges R, Hollricher K et al (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88(5):695–705CrossRefPubMedGoogle Scholar
  13. Bushnell WR, Gay JL (1978) Accumulation of solutes in relation to the structure and function of haustoria in powdery mildews. In: Spencer DM (ed) The powdery mildews. Academic Press, London, pp 183–235Google Scholar
  14. Caillaud MC, Piquerez SJ (2012) Subcellular localization of the HpaRxLR effector repertoire identifies a tonoplast-associated protein HaRxL17 that confers enhanced plant susceptibility. Plant J 69(2):252–265CrossRefPubMedGoogle Scholar
  15. Caillaud MC, Asai S et al (2013) A downy mildew effector attenuates salicylic acid-triggered immunity in Arabidopsis by interacting with the host mediator complex. PLoS Biol 11:e1001732CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cantu D, Govindarajulu M et al (2011) Next generation sequencing provides rapid access to the genome of Puccinia striiformis f. sp tritici, the causal agent of wheat stripe rust. PLoS One 6:8.  https://doi.org/10.1371/journal.pone.0024230 CrossRefGoogle Scholar
  17. Cantu D, Segovia V, Maclean D, Bayles R, Chen X, Kamoun S et al (2013) Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors. BMC Genom 14(1):270CrossRefGoogle Scholar
  18. Chaudhari P, Ahmed B et al (2014) Effector biology during biotrophic invasion of plant cells. Virulence 5(7):703–709CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chen XM, Penman L, Wan AM et al (2010) Virulence races of Puccinia striiformis f. sp. tritici in 2006 and 2007 and development of wheat stripe rust and distributions, dynamics, and evolutionary relationships of races from 2000 to 2007 in the United States. Can J Plant Pathol 32:315–333CrossRefGoogle Scholar
  20. Chen YE, Cui JM et al (2015) Influence of stripe rust infection on the photosynthetic characteristics and antioxidant system of susceptible and resistant wheat cultivars at the adult plant stage. Front Plant Sci 6:779.  https://doi.org/10.3389/fpls.2015.00779 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chen J, Upadhyaya NM et al (2017) Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat. Science 358(6370):1607–1610CrossRefPubMedGoogle Scholar
  22. Chen S, Guo Y et al (2018) Mapping and characterization of wheat stem rust resistance genes SrTm5 and Sr60 from Triticum monococcum. Theor Appl Genet 131(3):625–635CrossRefPubMedGoogle Scholar
  23. Cheng Y, Yao J et al (2015) Cytological and molecular analysis of nonhost resistance in rice to wheat powdery mildew and leaf rust pathogens. Protoplasma 252:1167–1179.  https://doi.org/10.1007/s00709-014-0750-9 CrossRefPubMedGoogle Scholar
  24. Cheng Y, Wu K et al (2017) PST ha5a23, a candidate effector from the obligate biotrophic pathogen Puccinia striiformis f sp tritici, is involved in plant defense suppression and rust pathogenicity. Environ Microbiol 19(5):1717–1729CrossRefPubMedGoogle Scholar
  25. Clancy MJ, Shambaugh ME et al (2002) Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene. Nucleic Acids Res 30:4509–4518.  https://doi.org/10.1093/nar/gkf573 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cloutier S, McCallum BD et al (2007) Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol Biol 65:93–106CrossRefPubMedGoogle Scholar
  27. Coll NS, Epple P, Dangl JL (2011) Programmed cell death in the plant immune system. Cell Death Differ 18:1247–1256.  https://doi.org/10.1038/cdd.2011.37 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Cunningham FJ, Goh NS, Demirer GS, Matos JL, Landry MP (2018) Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol.  https://doi.org/10.1016/j.tibtech.2018.03.009 CrossRefPubMedGoogle Scholar
  29. Cuomo CA, Bakkeren G et al (2017) Comparative analysis highlights variable genome content of wheat rusts and divergence of the mating loci. G3 7:361–376.  https://doi.org/10.1534/g3.116.032797 CrossRefPubMedGoogle Scholar
  30. Dagvadorj B, Ozketen AC, Andac A, Duggan C, Bozkurt TO, Akkaya MS (2017) A Puccinia striiformis f. sp. tritici secreted protein activates plant immunity at the cell surface. Sci Rep 7:1141.  https://doi.org/10.1038/s41598-017-01100-z CrossRefPubMedPubMedCentralGoogle Scholar
  31. Dean RA, Talbot NJ et al (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986CrossRefPubMedGoogle Scholar
  32. Dean R, Van Kan JA et al (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430CrossRefPubMedGoogle Scholar
  33. Delaunois B, Jeandet P (2014) Uncovering plant–pathogen crosstalk through apoplastic proteomic studies. Front Plant Sci 5:249.  https://doi.org/10.3389/fpls.2014.00249 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Delventhal R, Rajaraman J et al (2017) A comparative analysis of nonhost resistance across the two Triticeae crop species wheat and barley. BMC Plant Biol 17(1):232CrossRefPubMedPubMedCentralGoogle Scholar
  35. dit Frey NF, Robatzek S (2009) Trafficking vesicles: pro or contra pathogens? Curr Opin Plant Biol 12:437–443CrossRefGoogle Scholar
  36. Doehlemann G, Hemetsberger C (2013) Apoplastic immunity and its suppression by filamentous plant pathogens. New Phytol 198:1001–1016.  https://doi.org/10.1111/nph.12277 CrossRefPubMedGoogle Scholar
  37. Dou D, Kale SD et al (2008) RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery. Plant Cell 20:1930–1947CrossRefPubMedPubMedCentralGoogle Scholar
  38. Dou D, Kale SD, Liu T et al (2010) Different domains of Phytophthora sojae effector Avr4/6 are recognized by soybean resistance genes Rps4 and Rps6. Mol Plant Microbe Interact 23:425–435.  https://doi.org/10.1094/mpmi-23-4-0425 CrossRefPubMedGoogle Scholar
  39. Downie RC, Bouvet L, Furuki E, Gosman N, Gardner KA, Mackay IJ, Tan KC (2018) Assessing European wheat sensitivities to Parastagonospora nodorum necrotrophic effectors and fine-mapping the Snn3-B1 locus conferring sensitivity to the effector SnTox3. Front Plant Sci 9:881CrossRefPubMedPubMedCentralGoogle Scholar
  40. Du J, Vleeshouwers VG (2014) The do’s and don’ts of effectoromics. Methods Mol Biol 1127:257–268CrossRefPubMedGoogle Scholar
  41. Duplessis S, Cuomo CA, Lin YC et al (2011) Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc Natl Acad Sci USA 108:9166–9171.  https://doi.org/10.1073/pnas.1019315108 CrossRefPubMedGoogle Scholar
  42. Fabro G, Steinbrenner J et al (2011) Multiple candidate effectors from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity. PLoS Pathog 7(11):e1002348CrossRefPubMedPubMedCentralGoogle Scholar
  43. Fan J, Doerner P (2012) Genetic and molecular basis of nonhost disease resistance: complex, yes; silver bullet, no. Curr Opin Plant Biol 15(4):400–406CrossRefPubMedGoogle Scholar
  44. Faris JD, Liu Z, Xu SS (2013) Genetics of tan spot resistance in wheat. Theor Appl Genet 126:2197–2217CrossRefPubMedGoogle Scholar
  45. Ferreira RM, Moreira LM et al (2016) Unravelling potential virulence factor candidates in Xanthomonas citri subsp. citri by secretome analysis. Peer J 4:e1734.  https://doi.org/10.7717/peerj.1734 CrossRefPubMedGoogle Scholar
  46. Fetch T, Zegeye T, Park R, Hodson D, Wanyera R (2016) Detection of wheat stem rust races TTHSK and PTKTK in the Ug99 race group in Kenya in 2014. Plant Dis 100:1495CrossRefGoogle Scholar
  47. Feuillet C, Travella S, Stein N et al (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100(25):15253–15258CrossRefPubMedGoogle Scholar
  48. Fradin EF, Abd-El-Haliem A, Masini L, van den Berg GCM, Joosten MHAJ, Thomma BPHJ (2011) Interfamily transfer of tomato ve1 mediates Verticillium resistance in Arabidopsis. Plant Physiol 156:2255–2265CrossRefPubMedPubMedCentralGoogle Scholar
  49. Fu D, Uauy C et al (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360CrossRefPubMedPubMedCentralGoogle Scholar
  50. Giesbers AK, Pelgrom AJ et al (2017) Effector-mediated discovery of a novel resistance gene against Bremia lactucae in a nonhost lettuce species. New Phytol 216(3):915–926CrossRefPubMedPubMedCentralGoogle Scholar
  51. Gijzen M, Ishmael C, Shrestha SD (2014) Epigenetic control of effectors in plant pathogens. Front Plant Sci 5:638.  https://doi.org/10.3389/fpls.2014.00638 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Gilroy EM, Breen S et al (2011) Presence/absence, differential expression and sequence polymorphisms between PiAVR2 and PiAVR2-like in Phytophthora infestans determine virulence on R2 plants. New Phytol 191:763–776CrossRefPubMedGoogle Scholar
  53. Gout L, Fudal I, Kuhn ML, Blaise F, Eckert M, Cattolico L et al (2006) Lost in the middle of nowhere: the AvrLm1 avirulence gene of the Dothideomycete Leptosphaeria maculans. Mol Microbiol 60:67–80CrossRefPubMedGoogle Scholar
  54. Griffe LL (2017) Applying effectoromics and genomics to identify resistance against Rhynchosporium commune in barley. Doctoral dissertation, University of DundeeGoogle Scholar
  55. Gust AA, Brunner F, Nürnberger T (2010) Biotechnological concepts for improving plant innate immunity. Curr Opin Biotechnol 21(2):204–210CrossRefPubMedGoogle Scholar
  56. Haas BJ, Kamoun S, Zody MC, Jiang RHY, Handsaker RE, Cano LM et al (2009) Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461:393–398CrossRefPubMedGoogle Scholar
  57. Hein I, Birch PR et al (2009) Progress in mapping and cloning qualitative and quantitative resistance against Phytophthora infestans in potato and its wild relatives. Potato Res 52(3):215–227CrossRefGoogle Scholar
  58. Hogenhout SA, Van der Hoorn RA, Terauchi R, Kamoun S (2009) Emerging concepts in effector biology of plant-associated organisms. Mol Plant Microbe Interact 22(2):115–122CrossRefPubMedGoogle Scholar
  59. Huang L, Brooks SA, Li W et al (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:655–664PubMedPubMedCentralGoogle Scholar
  60. Iyer AS, McCouch SR (2004) The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Mol Plant Microbe Interact 17(12):1348–1354CrossRefPubMedGoogle Scholar
  61. Jafary H, Albertazzi G et al (2008) High diversity of genes for nonhost resistance of barley to heterologous rust fungi. Genetics 178:2327–2339.  https://doi.org/10.1534/genetics.107.077552 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Janik K, Stellmach H, Mittelberger C, Hause B (2019) Characterization of phytoplasmal effector protein interaction with proteinaceous plant host targets using bimolecular fluorescence complementation (BiFC). In: Musetti R, Pagliari L (eds) Phytoplasmas. Methods in Molecular Biology, vol 1875. Humana Press, New YorkGoogle Scholar
  63. Jia Y, McAdams SA et al (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19(15):4004–4014CrossRefPubMedPubMedCentralGoogle Scholar
  64. Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323CrossRefPubMedGoogle Scholar
  65. Kamoun S (2007) Groovy times: filamentous pathogen effectors revealed. Curr Opin Plant Biol 10:358–365CrossRefPubMedGoogle Scholar
  66. Kamper J, Kahmann R et al (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444:97–101CrossRefPubMedGoogle Scholar
  67. Kawashima CG, Guimaraes GA et al (2016) A pigeonpea gene confers resistance to Asian soybean rust in soybean. Nat Biotechnol 34:661–665CrossRefPubMedGoogle Scholar
  68. Kay S, Hahn S, Marois E, Hause G, Bonas U (2007) A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318(5850):648–651CrossRefPubMedGoogle Scholar
  69. Kiran K, Rawal HC et al (2016) Draft genome of the wheat rust pathogen (Puccinia triticina) unravels genome-wide structural variations during evolution. Genome Biol Evol 8(9):2702–2721.  https://doi.org/10.1093/gbe/evw197 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Kiran K, Rawal HC et al (2017) Dissection of genomic features and variations of three pathotypes of Puccinia striiformis through whole genome sequencing. Sci Rep 15:85.  https://doi.org/10.1038/srep42419 CrossRefGoogle Scholar
  71. Klymiuk V, Yaniv E, Huang L (2018) Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat Commun 9:e3735.  https://doi.org/10.1038/s41467-018-06138-9 CrossRefGoogle Scholar
  72. Koh S, André A et al (2005) Arabidopsis thaliana subcellular responses to compatible Erysiphe cichoracearum infections. Plant J 44:516–529.  https://doi.org/10.1111/j.1365-313x.2005.02545.x CrossRefPubMedGoogle Scholar
  73. Krattinger SG, Lagudah ES et al (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363CrossRefPubMedGoogle Scholar
  74. Lebrun MH, Langin T et al. (2016) Wheat effector assisted breeding for resistance to fungal pathogens (WEAB). Presented at Journées Jean Chevaugeon 2016 (JJC)—11èmes Rencontres de Phytopathologie—Mycologie, SociétéFrançaise de Phytopathologie (SFP), Aussois, FRA (2016-01-25—2016-01-29). 49. https://prodinra.inra.fr/record/347885
  75. Lee WS, Hammond-Kosack KE, Kanyuka K (2012) Barley stripe mosaic virus-mediated tools for investigating gene function in cereal plants and their pathogens: VIGS, HIGS, VOX. Plant Physiol 160(2):582–590.  https://doi.org/10.1104/pp.112.203489 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Lee HA, Kim SY et al (2014) Multiple recognition of RXLR effectors is associated with nonhost resistance of pepper against Phytophthora infestans. New Phytol 203(3):926–938CrossRefPubMedPubMedCentralGoogle Scholar
  77. Lenman M, Ali A et al (2016) Effector-driven marker development and cloning of resistance genes against Phytophthora infestans in potato breeding clone SW93-1015. Theor Appl Genet 129(1):105–115CrossRefPubMedGoogle Scholar
  78. Leonelli L, Erickson E, Lyska D, Niyogi KK (2016) Transient expression in Nicotiana benthamiana for rapid functional analysis of genes involved in non-photochemical quenching and carotenoid biosynthesis. Plant J 88(3):375–386CrossRefPubMedPubMedCentralGoogle Scholar
  79. Li H, Goodwin PH et al (2012) Microscopy and proteomic analysis of the non-host resistance of Oryza sativa to the wheat leaf rust fungus, Puccinia triticina f. sp. tritici. Plant Cell Rep 31:637–650.  https://doi.org/10.1007/s00299-011-1181-0 CrossRefPubMedGoogle Scholar
  80. Lipka U, Fuchs R et al (2010) Live and let die-Arabidopsis nonhost resistance to powdery mildews. Eur J Cell Biol 89:194–199.  https://doi.org/10.1016/j.ejcb.2009.11.011 CrossRefPubMedGoogle Scholar
  81. Liu W, Frick M, Huel R et al (2014) The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS–LRR sequence in wheat. Mol Plant 7:1740–1755.  https://doi.org/10.1093/mp/ssu112 CrossRefPubMedGoogle Scholar
  82. Liu R, Chen L, Jiang Y, Zhou Z, Zou G (2015) Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov 1:15007CrossRefPubMedPubMedCentralGoogle Scholar
  83. Liu CH, Pedersen C et al (2016) The stripe rust fungal effector PEC6 suppresses pattern-triggered immunity in a host species-independent manner and interacts with adenosine kinases. New Phytol 15:85.  https://doi.org/10.1111/nph.14034 CrossRefGoogle Scholar
  84. Lowe I, Cantu D, Dubcovsky J (2011) Durable resistance to the wheat rusts: integrating systems biology and traditional phenotype-based research methods to guide the deployment of resistance genes. Euphytica 179(1):69–79CrossRefPubMedPubMedCentralGoogle Scholar
  85. Lu YJ, Schornack S, Spallek T et al (2012) Patterns of plant subcellular responses to successful oomycete infections reveal differences in host cell reprogramming and endocytic trafficking. Cell Microbiol 14:682–697CrossRefPubMedPubMedCentralGoogle Scholar
  86. Mackie AJ, Roberts AM et al (1993) Glycoproteins recognized by monoclonal antibodies UB7, UB8, and UB10 are expressed early in the development of pea powdery mildew haustoria. Physiol Mol Plant Pathol 43:135–146.  https://doi.org/10.1006/pmpp.1993.1046 CrossRefGoogle Scholar
  87. Maekawa T, Kracher B et al (2012) Conservation of NLR-triggered immunity across plant lineages. Proc Natl Acad Sci USA 109(49):20119–20123CrossRefPubMedGoogle Scholar
  88. Mago R, Zhang P et al (2015) The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nat Plants 1:15186CrossRefPubMedGoogle Scholar
  89. Marchal C et al (2018) BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nat Plants.  https://doi.org/10.1038/s41477-018-0236-4 CrossRefPubMedPubMedCentralGoogle Scholar
  90. McDonald MC, Ahren D, Simpfendorfer S, Milgate A, Solomon PS (2018) The discovery of the virulence gene ToxA in the wheat and barley pathogen Bipolaris sorokinian. Mol Plant Pathol 19(2):432–439.  https://doi.org/10.1111/mpp.12535 CrossRefPubMedGoogle Scholar
  91. McLellan H, Boevink PC et al (2013) An RxLR effector from Phytophthora infestans prevents re-localisation of two plant NAC transcription factors from the endoplasmic reticulum to the nucleus. PLoS Pathog 9:e1003670CrossRefPubMedPubMedCentralGoogle Scholar
  92. Mengiste T (2012) Plant immunity to necrotrophs. Ann Rev Phytopathol 50:267–294CrossRefGoogle Scholar
  93. Miller KE, Kim Y, Huh WK, Park HO (2015) Bimolecular fluorescence complementation (BiFC) analysis: advances and recent applications for genome-wide interaction studies. J Mol Biol 427:2039–2055CrossRefPubMedPubMedCentralGoogle Scholar
  94. Moore JW, Herrera-Foessel S et al (2015) A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 47:1494–1498CrossRefPubMedGoogle Scholar
  95. Niks RE, Marcel TC (2009) Nonhost and basal resistance: how to explain specificity? New Phytol 182(4):817–828CrossRefPubMedGoogle Scholar
  96. Nirmala J, Drader T et al (2011) Concerted action of two avirulent spore effectors activates reaction to Puccinia graminis 1 (Rpg1)-mediated cereal stem rust resistance. Proc Natl Acad Sci USA 108(35):14676–14681CrossRefPubMedGoogle Scholar
  97. Nødvig CS, Nielsen JB, Kogle ME, Mortensen UH (2015) A CRISPR–Cas9 system for genetic engineering of filamentous fungi. PLoS One 10:e0133085CrossRefPubMedPubMedCentralGoogle Scholar
  98. Nowara D, Gay A et al (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–3141.  https://doi.org/10.1105/tpc.110.077040 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Pais M, Win J, Yoshida K, Etherington GJ, Cano LM, Raffaele S, Banfield MJ, Jones A, Kamoun S, Saunders DGO (2013) From pathogen genomes to host plant processes: the power of plant parasitic oomycetes. Genom Biol 14:211.  https://doi.org/10.1186/gb-2013-14-6-211 CrossRefGoogle Scholar
  100. Panwar V, McCallum B, Bakkeren G (2013a) Host-induced gene silencing of wheat leaf rust fungus Puccinia triticina pathogenicity genes mediated by the Barley stripe mosaic virus. Plant Mol Biol 81(6):595–608CrossRefPubMedGoogle Scholar
  101. Panwar V, McCallum B, Bakkeren G (2013b) Endogenous silencing of Puccinia triticina pathogenicity genes through in planta-expressed sequences leads to the suppression of rust diseases on wheat. Plant J 73(3):521–532CrossRefPubMedGoogle Scholar
  102. Panwar V, Jordan M et al (2018) Host-induced silencing of essential genes in Puccinia triticina through transgenic expression of RNAi sequences reduces severity of leaf rust infection in wheat. Plant Biotechnol J 16:1013–1023.  https://doi.org/10.1111/pbi.12845 CrossRefPubMedGoogle Scholar
  103. Patkar RN, Naqvi NI (2017) Fungal manipulation of hormone-regulated plant defense. PLoS Pathog 13(6):e1006334CrossRefPubMedPubMedCentralGoogle Scholar
  104. Patkar RN, Benke PI et al (2015) A fungal monooxygenase-derived jasmonate attenuates host innate immunity. Nat Chem Biol 11(9):733–740.  https://doi.org/10.1038/nchembio.1885 CrossRefPubMedGoogle Scholar
  105. Patpour M, Hovmøller MS et al (2016) Emergence of virulence to SrTmp in the Ug99 race group of wheat stem rust, Puccinia graminis f. sp. tritici, in Africa. Plant Dis 100:522.  https://doi.org/10.1094/pdis-08-15-0938-pdn CrossRefGoogle Scholar
  106. Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L et al (2013) The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341:786–788.  https://doi.org/10.1126/science.1239028 CrossRefPubMedGoogle Scholar
  107. Petre B, Joly DL, Duplessis S (2014) Effector proteins of rust fungi. Front Plant Sci 5:416PubMedPubMedCentralGoogle Scholar
  108. Petre B, Saunders DG et al (2015) Candidate effector proteins of the rust pathogen Melampsora larici-populina target diverse plant cell compartments. Mol Plant Microbe Interact 28:689–700CrossRefPubMedGoogle Scholar
  109. Petre B, Saunders DG et al (2016) Heterologous expression screens in Nicotiana benthamiana identify a candidate effector of the wheat yellow rust pathogen that associates with processing bodies. PLoS One 11:e0149035CrossRefPubMedPubMedCentralGoogle Scholar
  110. Pohl C, Kiel JA, Driessen AJ, Bovenberg RA, Nygard Y (2016) CRISPR/Cas9 based genome editing of Penicillium chrysogenum. ACS Synth Biol 5:754–764CrossRefPubMedGoogle Scholar
  111. Prasad P, Bhardwaj SC et al (2016) Ug99: saga, reality and status. Curr Sci 110(9):1614–1616Google Scholar
  112. Qi T, Zhu X et al (2017) Host-induced gene silencing of an important pathogenicity factor PsCPK1 in Puccinia striiformis f. sp. tritici enhances resistance of wheat to stripe rust. Plant Biotechnol J 15:85.  https://doi.org/10.1111/pbi.12829 CrossRefGoogle Scholar
  113. Qiao Y, Liu L et al (2013) Oomycete pathogens encode RNA silencing suppressors. Nat Genet 45:330–333CrossRefPubMedPubMedCentralGoogle Scholar
  114. Rampitsch C, Günel A, Beimcik E, Mauthe W (2015) Proteome of monoclonal antibody-purified haustoria from Puccinia triticina Race-1. Proteomics 15(7):1307–1315CrossRefPubMedGoogle Scholar
  115. Rigal A, Ma Q, Robert S (2014) Unraveling plant hormone signaling through the use of small molecules. Front Plant Sci 5:373.  https://doi.org/10.3389/fpls.2014.00373 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Roberts AM, Mackie AJ et al (1993) Molecular differentiation in the extra haustorial membrane of pea powdery mildew haustoria at early and late stages of development. Physiol Mol Plant Pathol 143:147–160.  https://doi.org/10.1006/pmpp.1993.1047 CrossRefGoogle Scholar
  117. Ruud AK, Dieseth JA, Lillemo M (2018) Effects of three Parastagonospora nodorum necrotrophic effectors on spring wheat under Norwegian field conditions. Crop Sci 58:159–168CrossRefGoogle Scholar
  118. Saintenac C, Zhang W, Salcedo A, Rouse MN, Trick HN, Akhunov E et al (2013) Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341:783–786.  https://doi.org/10.1126/science.1239022 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Salcedo A, Rutter W et al (2017) Variation in the AvrSr35 gene determines Sr35 resistance against wheat stem rust race Ug99. Science 358(6370):1604–1606CrossRefPubMedGoogle Scholar
  120. Saunders DG, Win J et al (2012) Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi. PLoS One 7:e29847.  https://doi.org/10.1371/journal.pone.0029847 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Savadi S, Prasad P et al (2017) Molecular breeding technologies and strategies for rust resistance in wheat (Triticum aestivum) for sustained food security. Plant Pathol 67:771–791.  https://doi.org/10.1111/ppa.12802 CrossRefGoogle Scholar
  122. Schulze-Lefert P, Panstruga R (2011) A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends Plant Sci 16(3):117–125CrossRefPubMedGoogle Scholar
  123. Schwessinger B, Sperschneider J, Cuddy WS et al (2018) A near-complete haplotype-phased genome of the dikaryotic wheat stripe rust fungus Puccinia striiformis f. sp. tritici reveals high interhaplotype diversity. mBio 9:e02275–e02317.  https://doi.org/10.1128/mbio.02275-17 CrossRefPubMedPubMedCentralGoogle Scholar
  124. See PT, Iagallo EM, Oliver RP et al (2019) Heterologous expression of the Pyrenophora tritici-repentis effector proteins ToxA and ToxB, and the prevalence of effector sensitivity in Australian cereal crops. Front Microbiol 10:182.  https://doi.org/10.3389/fmicb.2019.00182 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Segovia V, Bruce M et al (2016) Two small secreted proteins from Puccinia triticina induce reduction of β-glucoronidase transient expression in wheat isolines containing Lr9, Lr24 and Lr26. Can J Plant Pathol 38(1):91–102.  https://doi.org/10.1080/07060661.2016.1150884 CrossRefGoogle Scholar
  126. Selin C, De Kievit TR, Belmonte MF, Fernando WGD (2016) Elucidating the role of effectors in plant-fungal interactions: progress and challenges. Front Microbiol 7:600.  https://doi.org/10.3389/fmicb.2016.00600 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Shafiei R, Hang C, Kang JG, Loake GJ (2007) Identification of loci controlling non-host disease resistance in Arabidopsis against the leaf rust pathogen Puccinia triticina. Mol Plant Pathol 8:773–784.  https://doi.org/10.1111/j.1364-3703.2007.00431.x CrossRefPubMedGoogle Scholar
  128. Sharma S, Sharma S et al (2013) Deployment of the B urkholderiaglumae type III secretion system as an efficient tool for translocating pathogen effectors to monocot cells. Plant J 74(4):701–712CrossRefPubMedGoogle Scholar
  129. Shi TQ, Liu GN, Ji RY, Shi K, Song P, Ren LJ, Huang H, Ji XJ (2017) CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art. Appl Microbiol Biotechnol 101(20):7435–7443.  https://doi.org/10.1007/s00253-017-8497-9 CrossRefPubMedGoogle Scholar
  130. Singh RP, Hodson DP et al (2006) Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. CAB Rev 1:054CrossRefGoogle Scholar
  131. Sohn KH, Lei R et al (2007) The downy mildew effector proteins ATR1 and ATR13 promote disease susceptibility in Arabidopsis thaliana. Plant Cell 19(12):4077–4090CrossRefPubMedPubMedCentralGoogle Scholar
  132. Sonah H, Deshmukh RK, Bélanger RR (2016) Computational prediction of effector proteins in fungi: opportunities and challenges. Front Plant Sci 7:126.  https://doi.org/10.3389/fpls.2016.00126 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Song X, Rampitsch C et al (2011) Proteome analysis of wheat leaf rust fungus, Puccinia triticina, infection structures enriched for haustoria. Proteomics 11(5):944–963CrossRefPubMedGoogle Scholar
  134. Sperschneider J, Williams AH (2015) Evaluation of secretion prediction highlights differing approaches needed for oomycete and fungal effectors. Front Plant Sci 6:1168CrossRefPubMedPubMedCentralGoogle Scholar
  135. Sperschneider J, Gardiner DM et al (2016) EffectorP: predicting fungal effector proteins from secretomes using machine learning. New Phytol 210:743–761CrossRefPubMedGoogle Scholar
  136. Sperschneider J, Catanzariti AM et al (2017) LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell. Sci Rep 7:44598.  https://doi.org/10.1038/srep44598 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Stergiopoulos I, de Wit PJ (2009) Fungal effector proteins. Ann Rev Phytopathol 47:233–263CrossRefGoogle Scholar
  138. Steuernagel B, Periyannan SK, Hernandez-Pinzon I, Witek K, Rouse MN, Yu G et al (2016) Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat Biotechnol 34:652–655CrossRefPubMedGoogle Scholar
  139. Tabuchi M, Kawai Y et al (2009) Development of a novel functional high-throughput screening system for pathogen effectors in the yeast Saccharomyces cerevisiae. Biosci Biotechnol Biochem 73(10):2261–2267CrossRefPubMedGoogle Scholar
  140. Tamura S (1990) Historical aspects of gibberellins. In: Takahashi N, Phinney BO, MacMillan J (eds) Gibberellins. Springer, Berlin, pp 1–8Google Scholar
  141. Tan KC, Phan HT, Rybak K, John E, Chooi YH, Solomon PS, Oliver RP (2015) Functional redundancy of necrotrophic effectors–consequences for exploitation for breeding. Front Plant Sci 6:501PubMedPubMedCentralGoogle Scholar
  142. Thind AK, Wicker T et al (2017) Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat Biotechnol 35(8):793–796CrossRefPubMedGoogle Scholar
  143. Thomas WJ, Thireault CA, Kimbrel JA, Chang JH (2009) Recombineering and stable integration of the Pseudomonas syringae pv. syringae 61 hrp/hrc cluster into the genome of the soil bacterium Pseudomonas fluorescens Pf0-1. Plant J 60(5):919–928CrossRefPubMedGoogle Scholar
  144. Tinoco MLP, Dias BB et al (2010) In vivo trans-specific gene silencing in fungal cells by in planta expression of a double-stranded RNA. BMC Biol 8(1):27CrossRefPubMedPubMedCentralGoogle Scholar
  145. Torto TA, Li S, Styer A, Huitema E, Testa A, Gow NA et al (2003) EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. Genom Res 13(7):1675–1685CrossRefGoogle Scholar
  146. Uhse S, Djamei A (2018) Effectors of plant-colonizing fungi and beyond. PLoS Pathog 14(6):e1006992CrossRefPubMedPubMedCentralGoogle Scholar
  147. Uma B, Rani TS, Podile AR (2011) Warriors at the gate that never sleep: non-host resistance in plants. J Plant Physiol 168(18):2141–2152CrossRefPubMedGoogle Scholar
  148. Upadhyaya NM, Mago R et al (2014) A bacterial type III secretion assay for delivery of fungal effector proteins into wheat. Mol Plant Microbe Interact 27:255–264.  https://doi.org/10.1094/mpmi-07-13-0187-f CrossRefPubMedGoogle Scholar
  149. Upadhyaya NM, Garnica DP et al (2015) Comparative genomics of Australian isolates of the wheat stem rust pathogen Puccinia graminis f. sp. tritici reveals extensive polymorphism in candidate effector genes. Front Plant Sci 5:759CrossRefPubMedPubMedCentralGoogle Scholar
  150. Vleeshouwers VG, Oliver RP (2014) Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. Mol Plant Microbe Interact 27(3):196–206CrossRefPubMedGoogle Scholar
  151. Vleeshouwers VG, Rietman H, Krenek P et al (2008) Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS One 3:e2875CrossRefPubMedPubMedCentralGoogle Scholar
  152. Vleeshouwers VG, Raffaele S et al (2011) Understanding and exploiting late blight resistance in the age of effectors. Ann Rev Phytopathol 49:507–531CrossRefGoogle Scholar
  153. Vogel JP, Raab TK et al (2002) PMR6, a pectatelyase-like gene required for powdery mildew susceptibility in Arabidopsis. Plant Cell 14(9):2095–2106CrossRefPubMedPubMedCentralGoogle Scholar
  154. Walton JD, Avis TJ et al (2009) Effectors, effectors et encore des effectors: the XIV International Congress on Molecular-Plant Microbe Interactions, Quebec. Mol Plant Microbe Interact 22:1479–1483CrossRefPubMedPubMedCentralGoogle Scholar
  155. Wang F, Lin R, Feng J et al (2015) TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana. Front Plant Sci 6:108.  https://doi.org/10.3389/fpls.2015.00108 CrossRefPubMedPubMedCentralGoogle Scholar
  156. Wellings CR, McIntosh RA, Walker J (1987) Puccinia striiformis f. sp. tritici in eastern Australia—possible means of entry and implications for plant quarantine. Plant Pathol 36:239–241CrossRefGoogle Scholar
  157. Wu JQ, Sakthikumar S et al (2017) Comparative genomics integrated with association analysis identifies candidate effector genes corresponding to Lr20 in phenotype-paired Puccinia triticina isolates from Australia. Front Plant Sci 8:148PubMedPubMedCentralGoogle Scholar
  158. Wulff BB, Horvath DM, Ward ER (2011) Improving immunity in crops: new tactics in an old game. Curr Opin Plant Biol 14(4):468–476CrossRefPubMedGoogle Scholar
  159. Xia C, Wang M et al (2017) Secretome characterization and correlation analysis reveal putative pathogenicity mechanisms and identify candidate avirulence genes in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Front Microbiol 8:2394CrossRefPubMedPubMedCentralGoogle Scholar
  160. Xia C, Wang M, Yin C et al (2018) Genomic insights into host adaptation between the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) and the barley stripe rust pathogen (Puccinia striiformis f. sp. hordei). BMC Genomics 19:664.  https://doi.org/10.1186/s12864-018-5041-y CrossRefPubMedPubMedCentralGoogle Scholar
  161. Yin CT, Jurgenson JE, Hulbert SH (2011) Development of a host-induced RNAi system in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Mol Plant Microbe Interact 24:554–561CrossRefPubMedGoogle Scholar
  162. Yin C, Park JJ et al (2014) Characterization of a tryptophan 2-monooxygenase gene from Puccinia graminis f. sp. tritici involved in auxin biosynthesis and rust pathogenicity. Mol Plant Microbe Interact 27(3):227–235CrossRefPubMedGoogle Scholar
  163. Yin C, Downey SI, Klages-Mundt NL, Ramachandran S, Chen X, Szabo LJ et al (2015) Identification of promising host-induced silencing targets among genes preferentially transcribed in haustoria of Puccinia. BMC Genom 16:1791.  https://doi.org/10.1186/s12864-015-1791-y CrossRefGoogle Scholar
  164. Zhang GQ, Angeles ER et al (1996) RAPD and RFLP mapping of the bacterial blight resistance gene xa-13 in rice. Theor Appl Genet 93(1–2):65–70CrossRefPubMedGoogle Scholar
  165. Zhang H, Guo J, Voegele RT, Zhang J, Duan Y, Luo H, Kang Z (2012) Functional characterization of calcineurin homologs PsCNA1/PsCNB1 in Puccinia striiformis f. sp. tritici using a host-induced RNAi system. PLoS One 7(11):e49262CrossRefPubMedPubMedCentralGoogle Scholar
  166. Zhang W, Chen S et al (2017) Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. Proc Natl Acad Sci USA 114:e9483–e9492CrossRefPubMedGoogle Scholar
  167. Zhao B, Lin X et al (2005) A maize resistance gene functions against bacterial streak disease in rice. Proc Natl Acad Sci USA 102:15383–15388.  https://doi.org/10.1073/pnas.0503023102 CrossRefPubMedGoogle Scholar
  168. Zhao M, Wang J et al (2018) Candidate effector Pst_8713 impairs the plant immunity and contributes to virulence of Puccinia striiformis f. sp. tritici. Front Plant Sci 15:85.  https://doi.org/10.3389/fpls.2018.01294 CrossRefGoogle Scholar
  169. Zheng W, Huang L et al (2013a) High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus. Nat Commun 4:2673.  https://doi.org/10.1038/ncomms3673 CrossRefPubMedPubMedCentralGoogle Scholar
  170. Zheng Z, Nonomura T et al (2013b) Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica. PLoS One 8(7):e70723CrossRefPubMedPubMedCentralGoogle Scholar
  171. Zhu X, Qi T et al (2017) Host-induced gene silencing of the MAPKK gene PsFUZ7 confers stable resistance to wheat stripe rust. Plant Physiol 175:1853–1863.  https://doi.org/10.1104/pp.17.01223 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Pramod Prasad
    • 1
  • Siddanna Savadi
    • 2
  • S. C. Bhardwaj
    • 1
    Email author
  • O. P. Gangwar
    • 1
  • Subodh Kumar
    • 1
  1. 1.ICAR-Indian Institute of Wheat and Barley Research, Regional StationShimlaIndia
  2. 2.ICAR-Directorate of Cashew ResearchPutturIndia

Personalised recommendations