, Volume 249, Issue 5, pp 1259–1266 | Cite as

Multifaceted plant G protein: interaction network, agronomic potential, and beyond

  • Yijun WangEmail author
  • Yali Wang
  • Dexiang Deng


Main conclusion

Heterotrimeric G protein and interacting effectors are relevant for agronomic significance. We can manipulate G protein and effectors, individually or in combination, to develop plant ideotypes by intelligent design breeding.

Heterotrimeric guanine nucleotide-binding protein (G protein) is involved in a wide range of biological events, many of which with agronomic significance. In this review, we summarize recent advances of plant G protein research. We first retrieve maize G protein core subunits Gα, Gβ, and Gγ based on information of Arabidopsis and rice G proteins using integrated BLAST and domain confirmation. Then, we briefly introduce the distribution and function of G protein. We also describe the interaction between G protein and CLAVATA receptor, brassinosteroid signaling kinase complex, and MADS-domain transcription factor. Finally, we discuss the application of G protein knowledge in intelligent plant breeding with focus on the improvement of agronomically important traits.


G protein Functional characterization Interaction network Agronomic potential Intelligent plant breeding 



This work was supported by the National Natural Science Foundation of China (31571671), the National Key Research and Development Program of China (2016YFD0101002), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (18KJA210002), the Qing Lan Project of Yangzhou University (QLYZU201809), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).


  1. Bisht NC, Jez JM, Pandey S (2011) An elaborate heterotrimeric G-protein family from soybean expands the diversity of plant G-protein networks. New Phytol 190:35–48CrossRefGoogle Scholar
  2. Bommert P, Je BI, Goldshmidt A, Jackson D (2013) The maize Gα gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size. Nature 502:555–558CrossRefGoogle Scholar
  3. Botella JR (2012) Can heterotrimeric G proteins help to feed the world? Trends Plant Sci 17:563–568CrossRefGoogle Scholar
  4. Brear AG, Yoon J, Wojtyniak M, Sengupta P (2014) Diverse cell type-specific mechanisms localize G protein-coupled receptors to Caenorhabditis elegans sensory cilia. Genetics 197:667–684CrossRefGoogle Scholar
  5. Chakravorty D, Trusov Y, Zhang W, Acharya BR, Sheahan MB, McCurdy DW, Assmann SM, Botella JR (2011) An atypical heterotrimeric G-protein γ-subunit is involved in guard cell K+-channel regulation and morphological development in Arabidopsis thaliana. Plant J 67:840–851CrossRefGoogle Scholar
  6. Chakravorty D, Gookin TE, Milner MJ, Yu Y, Assmann SM (2015) Extra-large G proteins expand the repertoire of subunits in Arabidopsis heterotrimeric G protein signaling. Plant Physiol 169:512–529CrossRefGoogle Scholar
  7. Chen Y, Ji F, Xie H, Liang J, Zhang J (2006) The regulator of G-protein signaling proteins involved in sugar and abscisic acid signaling in Arabidopsis seed germination. Plant Physiol 140:302–310CrossRefGoogle Scholar
  8. Cheng Z, Li JF, Niu Y, Zhang XC, Woody OZ, Xiong Y, Djonović S, Millet Y, Bush J, McConkey BJ, Sheen J, Ausubel FM (2015) Pathogen-secreted proteases activate a novel plant immune pathway. Nature 521:213–216CrossRefGoogle Scholar
  9. Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171CrossRefGoogle Scholar
  10. Ferrero-Serrano Á, Assmann SM (2016) The α-subunit of the rice heterotrimeric G protein, RGA1, regulates drought tolerance during the vegetative phase in the dwarf rice mutant d1. J Exp Bot 67:3433–3443CrossRefGoogle Scholar
  11. Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41:494–497CrossRefGoogle Scholar
  12. Ishida T, Tabata R, Yamada M, Aida M, Mitsumasu K, Fujiwara M, Yamaguchi K, Shigenobu S, Higuchi M, Tsuji H, Shimamoto K, Hasebe M, Fukuda H, Sawa S (2014) Heterotrimeric G proteins control stem cell proliferation through CLAVATA signaling in Arabidopsis. EMBO Rep 15:1202–1209CrossRefGoogle Scholar
  13. Je BI, Xu F, Wu Q, Liu L, Meeley R, Gallagher JP, Corcilius L, Payne RJ, Bartlett ME, Jackson D (2018) The CLAVATA receptor FASCIATED EAR2 responds to distinct CLE peptides by signaling through two downstream effectors. Elife 7:e35673CrossRefGoogle Scholar
  14. Johnston CA, Taylor JP, Gao Y, Kimple AJ, Grigston JC, Chen JG, Siderovski DP, Jones AM, Willard FS (2007) GTPase acceleration as the rate-limiting step in Arabidopsis G protein-coupled sugar signaling. Proc Natl Acad Sci USA 104:17317–17322CrossRefGoogle Scholar
  15. Kim TW, Wang ZY (2010) Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol 61:681–704CrossRefGoogle Scholar
  16. Kunihiro S, Saito T, Matsuda T, Inoue M, Kuramata M, Taguchi-Shiobara F, Youssefian S, Berberich T, Kusano T (2013) Rice DEP1, encoding a highly cysteine-rich G protein γ subunit, confers cadmium tolerance on yeast cells and plants. J Exp Bot 64:4517–4527CrossRefGoogle Scholar
  17. Lease KA, Wen J, Li J, Doke JT, Liscum E, Walker JC (2001) A mutant Arabidopsis heterotrimeric G-protein β subunit affects leaf, flower, and fruit development. Plant Cell 13:2631–2641Google Scholar
  18. Li Q, Yang X, Bai G, Warburton ML, Mahuku G, Gore M, Dai J, Li J, Yan J (2010) Cloning and characterization of a putative GS3 ortholog involved in maize kernel development. Theor Appl Genet 120:753–763CrossRefGoogle Scholar
  19. Li S, Liu W, Zhang X, Liu Y, Li N, Li Y (2012) Roles of the Arabidopsis G protein γ subunit AGG3 and its rice homologs GS3 and DEP1 in seed and organ size control. Plant Signal Behav 7:1357–1359CrossRefGoogle Scholar
  20. Liu J, Ding P, Sun T, Nitta Y, Dong O, Huang X, Yang W, Li X, Botella JR, Zhang Y (2013) Heterotrimeric G proteins serve as a converging point in plant defense signaling activated by multiple receptor-like kinases. Plant Physiol 161:2146–2158CrossRefGoogle Scholar
  21. Liu Q, Han R, Wu K, Zhang J, Ye Y, Wang S, Chen J, Pan Y, Li Q, Xu X, Zhou J, Tao D, Wu Y, Fu X (2018) G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nat Commun 9:852CrossRefGoogle Scholar
  22. Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, Xiao J, Guo X, Xu S, Niu Y, Jin J, Zhang H, Xu X, Li L, Wang W, Qian Q, Ge S, Chong K (2015) COLD1 confers chilling tolerance in rice. Cell 160:1209–1221CrossRefGoogle Scholar
  23. Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q (2010) Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA 107:19579–19584CrossRefGoogle Scholar
  24. Maruta N, Trusov Y, Brenya E, Parekh U, Botella JR (2015) Membrane-localized extra-large G proteins and Gβγ of the heterotrimeric G proteins form functional complexes engaged in plant immunity in Arabidopsis. Plant Physiol 167:1004–1016CrossRefGoogle Scholar
  25. Papayannopoulou T, Priestley GV, Bonig H (2003) Nakamoto B (2003) The role of G-protein signaling in hematopoietic stem/progenitor cell mobilization. Blood 101:4739–4747CrossRefGoogle Scholar
  26. Peng Y, Chen L, Li S, Zhang Y, Xu R, Liu Z, Liu W, Kong J, Huang X, Wang Y, Cheng B, Zheng L, Li Y (2018) BRI1 and BAK1 interact with G proteins and regulate sugar-responsive growth and development in Arabidopsis. Nat Commun 9:1522CrossRefGoogle Scholar
  27. Ross EM (2008) Coordinating speed and amplitude in G-protein signaling. Curr Biol 18:R777–R783CrossRefGoogle Scholar
  28. Roy Choudhury S, Riesselman AJ, Pandey S (2014) Constitutive or seed-specific overexpression of Arabidopsis G-protein γ subunit 3 (AGG3) results in increased seed and oil production and improved stress tolerance in Camelina sativa. Plant Biotechnol J 12:49–59CrossRefGoogle Scholar
  29. Schoof H, Lenhard M, Haecker A, Mayer KF, Jürgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644CrossRefGoogle Scholar
  30. Stewart A, Fisher RA (2015) Introduction: G protein-coupled receptors and RGS proteins. Prog Mol Biol Transl Sci 133:1–11CrossRefGoogle Scholar
  31. Sun H, Qian Q, Wu K, Luo J, Wang S, Zhang C, Ma Y, Liu Q, Huang X, Yuan Q, Han R, Zhao M, Dong G, Guo L, Zhu X, Gou Z, Wang W, Wu Y, Lin H, Fu X (2014) Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet 46:652–656CrossRefGoogle Scholar
  32. Sun S, Wang L, Mao H, Shao L, Li X, Xiao J, Ouyang Y, Zhang Q (2018) A G-protein pathway determines grain size in rice. Nat Commun 9:851CrossRefGoogle Scholar
  33. Swain DM, Sahoo RK, Srivastava VK, Tripathy BC, Tuteja R, Tuteja N (2017) Function of heterotrimeric G-protein γ subunit RGG1 in providing salinity stress tolerance in rice by elevating detoxification of ROS. Planta 245:367–383CrossRefGoogle Scholar
  34. Theißen G, Melzer R, Rümpler F (2016) MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 143:3259–3271CrossRefGoogle Scholar
  35. Thung L, Trusov Y, Chakravorty D, Botella JR (2012) Gγ1+Gγ2+Gγ3=Gβ: the search for heterotrimeric G-protein γ subunits in Arabidopsis is over. J Plant Physiol 169:542–545CrossRefGoogle Scholar
  36. Trusov Y, Rookes JE, Tilbrook K, Chakravorty D, Mason MG, Anderson D, Chen JG, Jones AM, Botella JR (2007) Heterotrimeric G protein γ subunits provide functional selectivity in Gβγ dimer signaling in Arabidopsis. Plant Cell 19:1235–1250CrossRefGoogle Scholar
  37. Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y, Kitano H, Matsuoka M (2000) Rice dwarf mutant d1, which is defective in the alpha subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci USA 97:11638–11643CrossRefGoogle Scholar
  38. Ullah H, Chen JG, Young JC, Im KH, Sussman MR, Jones AM (2001) Modulation of cell proliferation by heterotrimeric G protein in Arabidopsis. Science 292:2066–2069CrossRefGoogle Scholar
  39. Urano D, Jones JC, Wang H, Matthews M, Bradford W, Bennetzen JL, Jones AM (2012) G protein activation without a GEF in the plant kingdom. PLoS Genet 8:e1002756CrossRefGoogle Scholar
  40. Urano D, Colaneri A, Jones AM (2014) Gα modulates salt-induced cellular senescence and cell division in rice and maize. J Exp Bot 65:6553–6561CrossRefGoogle Scholar
  41. Utsunomiya Y, Samejima C, Takayanagi Y, Izawa Y, Yoshida T, Sawada Y, Fujisawa Y, Kato H, Iwasaki Y (2011) Suppression of the rice heterotrimeric G protein β-subunit gene, RGB1, causes dwarfism and browning of internodes and lamina joint regions. Plant J 67:907–916CrossRefGoogle Scholar
  42. Wang Y, Huang Z, Deng D, Ding H, Zhang R, Wang S, Bian Y, Yin Z, Xu X (2013) Meta-analysis combined with syntenic metaQTL mining dissects candidate loci for maize yield. Mol Breeding 31:601–614CrossRefGoogle Scholar
  43. Wang D, Zhao WL, Cai MJ, Wang JX, Zhao XF (2015) G-protein-coupled receptor controls steroid hormone signaling in cell membrane. Sci Rep 5:8675CrossRefGoogle Scholar
  44. Wang Y, Xu J, Deng D, Ding H, Bian Y, Yin Z, Wu Y, Zhou B, Zhao Y (2016) A comprehensive meta-analysis of plant morphology, yield, stay-green, and virus disease resistance QTL in maize (Zea mays L.). Planta 243:459–471CrossRefGoogle Scholar
  45. Wang Y, Wu Y, Yu B, Yin Z, Xia Y (2017) Extra-large G proteins interact with E3 Ligases PUB4 and PUB2 and function in cytokinin and developmental processes. Plant Physiol 173:1235–1246CrossRefGoogle Scholar
  46. Waters EM, Thompson LI, Patel P, Gonzales AD, Ye HZ, Filardo EJ, Clegg DJ, Gorecka J, Akama KT, McEwen BS, Milner TA (2015) G-protein-coupled estrogen receptor 1 is anatomically positioned to modulate synaptic plasticity in the mouse hippocampus. J Neurosci 35:2384–2397CrossRefGoogle Scholar
  47. Wu Q, Regan M, Furukawa H, Jackson D (2018) Role of heterotrimeric Gα proteins in maize development and enhancement of agronomic traits. PLoS Genet 14:e1007374CrossRefGoogle Scholar
  48. Xu J, Zhang S (2015) Mitogen-activated protein kinase cascades in signalling plant growth and development. Trends Plant Sci 20:56–64CrossRefGoogle Scholar
  49. Zhang DP, Zhou Y, Yin JF, Yan XJ, Lin S, Xu WF, Baluška F, Wang YP, Xia YJ, Liang GH, Liang JS (2015) Rice G-protein subunits qPE9-1 and RGB1 play distinct roles in abscisic acid responses and drought adaptation. J Exp Bot 66:6371–6384CrossRefGoogle Scholar
  50. Zhu H, Li GJ, Ding L, Cui X, Berg H, Assmann SM, Xia Y (2009) Arabidopsis extra large G-protein 2 (XLG2) interacts with the Gβγ subunit of heterotrimeric G protein and functions in disease resistance. Mol Plant 2:513–525CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
  2. 2.Jiangsu Co-Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina

Personalised recommendations