Advertisement

Planta

, Volume 249, Issue 5, pp 1349–1364 | Cite as

Physiological function of photoreceptor UVR8 in UV-B tolerance in the liverwort Marchantia polymorpha

  • Youichi KondouEmail author
  • Yuta Miyagi
  • Takeshi Morito
  • Kenta Fujihira
  • Wataru Miyauchi
  • Asami Moriyama
  • Takuya Terasawa
  • Sakiko Ishida
  • Kosei Iwabuchi
  • Hiroyoshi Kubo
  • Ryuichi Nishihama
  • Kimitsune Ishizaki
  • Takayuki Kohchi
Original Article

Abstract

Main conclusion

The physiological importance of MpUVR8 in UV-B resistance and translocation in a UV-B-dependent manner from the cytosol into the nucleus is characterized in Marchantia polymorpha.

UV RESISTANCE LOCUS 8 (UVR8) is an ultraviolet-B (UV-B) light receptor functioning for UV-B sensing and tolerance in Arabidopsis thaliana and other species. It is unclear whether UVR8 physiologically functions in UV-B-induced defense responses in Marchantia polymorpha, which belongs to the earliest diverging group of embryophyte lineages. Here, we demonstrate that UVR8 has a physiological function in UV-B tolerance and that there is a UVR8-dependent pathway involved. In addition, a UVR8-independent pathway is revealed. We examine the tissue-specific expression pattern of M. polymorpha UVR8 (MpUVR8), showing that it is highly expressed in the apical notch in thalli and gametangiophores, as well as in antheridial and archegonial heads. Furthermore, Mpuvr8KO plant transformants, in which the MpUVR8 locus was disrupted, were produced and analyzed to understand the physiological and molecular function of MpUVR8. Analysis using these plants indicates the important roles of MpUVR8 and MpUVR8-regulated genes, and of MpUVR8-independent pathways in UV-B tolerance. Subcellular localization of Citrine-fused MpUVR8 in M. polymorpha cells was also investigated. It was found to translocate from the cytosol into the nucleus in response to UV-B irradiation. Our findings indicate strong conservation of the physiological function of UVR8 and the molecular mechanisms for UVR8-dependent signal transduction through regulation of gene expression in embryophytes.

Keywords

Land plant Nuclear translocation UV-B-absorbing compounds UV-B signal transduction UVR8-independent pathway 

Abbreviations

CHS

CHALCONE SYNTHASE

COP1

CONSTITUTIVELY PHOTOMORPHOGENIC 1

CPDs

Cyclobutane pyrimidine dimers

DAPI

4′,6′-Diamidino-2-phenylindole

GUS

β-Glucuronidase

HY5

ELONGATED HYPOCOTYL 5

ROS

Reactive oxygen species

RQ

Relative quantification

Notes

Acknowledgements

We appreciate the helpful discussions with Jun Hidema, Mika Teranishi, Shohei Yamaoka, Tianhong Li and Shinya Takahashi. We also thank Tatsuya Takizawa, Yasumasa Uemura, Moemi Sekikawa, Keisuke Takeda, Masahiko Ebisawa, Miho Yamaoki, Syun Sugama, Toshiki Takeda, Seika Sadahisa, Koichiro Seto, Syota Takei, Takao Masuda, Masaki Ishida, and Syota Yokoi for technical support. This work was supported by JSPS KAKENHI Grant no. 25450158 to YK and 17K15145 to KI.

Supplementary material

425_2019_3090_MOESM1_ESM.docx (263 kb)
Supplementary material 1 (DOC 264 kb)

References

  1. Albert NW, Thrimawithana AH, McGhie TK, Clayton WA, Deroles SC, Schwinn KE, Bowman JL, Jordan BR, Davies KM (2018) Genetic analysis of the liverwort Marchantia polymorpha reveals that R2R3MYB activation of flavonoid production in response to abiotic stress is an ancient character in land plants. New Phytol 218(2):554–566.  https://doi.org/10.1111/nph.15002 CrossRefPubMedGoogle Scholar
  2. Allorent G, Lefebvre-Legendre L, Chappuis R, Kuntz M, Truong TB, Niyogi KK, Ulm R, Goldschmidt-Clermont M (2016) UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 113(51):14864–14869.  https://doi.org/10.1073/pnas.1607695114 CrossRefPubMedGoogle Scholar
  3. Bernula P, Crocco CD, Arongaus AB, Ulm R, Nagy F, Viczian A (2017) Expression of the UVR8 photoreceptor in different tissues reveals tissue-autonomous features of UV-B signalling. Plant Cell Environ 40(7):1104–1114.  https://doi.org/10.1111/pce.12904 CrossRefPubMedGoogle Scholar
  4. Binkert M, Kozma-Bognar L, Terecskei K, De Veylder L, Nagy F, Ulm R (2014) UV-B-responsive association of the Arabidopsis bZIP transcription factor ELONGATED HYPOCOTYL5 with target genes, including its own promoter. Plant Cell 26(10):4200–4213.  https://doi.org/10.1105/tpc.114.130716 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12(12):2383–2394.  https://doi.org/10.1105/tpc.12.12.2383 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bowman JL, Kohchi T, Yamato KT et al (2017) Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171(2):287–304.e215.  https://doi.org/10.1016/j.cell.2017.09.030 CrossRefPubMedGoogle Scholar
  7. Britt AB (1996) DNA damage and repair in plants. Annu Rev Plant Physiol Plant Mol Biol 47:75–100.  https://doi.org/10.1146/annurev.arplant.47.1.75 CrossRefPubMedGoogle Scholar
  8. Brosché M, Strid A (2003) Molecular events following perception of ultraviolet-B radiation by plants. Physiol Plant 117:1–10.  https://doi.org/10.1034/j.1399-3054.2003.1170101.x CrossRefGoogle Scholar
  9. Brown BA, Jenkins GI (2008) UV-B signaling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH. Plant Physiol 146(2):576–588.  https://doi.org/10.1104/pp.107.108456 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brown BA, Cloix C, Jiang GH, Kaiserli E, Herzyk P, Kliebenstein DJ, Jenkins GI (2005) A UV-B-specific signaling component orchestrates plant UV protection. Proc Natl Acad Sci USA 102(50):18225–18230.  https://doi.org/10.1073/pnas.0507187102 CrossRefPubMedGoogle Scholar
  11. Chiyoda S, Ishizaki K, Kataoka H, Yamato KT, Kohchi T (2008) Direct transformation of the liverwort Marchantia polymorpha L. by particle bombardment using immature thalli developing from spores. Plant Cell Rep 27(9):1467–1473.  https://doi.org/10.1007/s00299-008-0570-5 CrossRefPubMedGoogle Scholar
  12. Christie JM, Arvai AS, Baxter KJ, Heilmann M, Pratt AJ, O’Hara A, Kelly SM, Hothorn M, Smith BO, Hitomi K, Jenkins GI, Getzoff ED (2012) Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 335(6075):1492–1496.  https://doi.org/10.1126/science.1218091 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Clayton WA, Albert NW, Thrimawithana AH, McGhie TK, Deroles SC, Schwinn KE, Warren BA, McLachlan ARG, Bowman JL, Jordan BR, Davies KM (2018) UVR8-mediated induction of flavonoid biosynthesis for UVB tolerance is conserved between the liverwort Marchantia polymorpha and flowering plants. Plant J 96(3):503–517.  https://doi.org/10.1111/tpj.14044 CrossRefPubMedGoogle Scholar
  14. Coffey A, Prinsen E, Jansen MAK, Conway J (2017) The UVB photoreceptor UVR8 mediates accumulation of UV-absorbing pigments, but not changes in plant morphology, under outdoor conditions. Plant Cell Environ 40(10):2250–2260.  https://doi.org/10.1111/pce.13025 CrossRefPubMedGoogle Scholar
  15. Favory JJ, Stec A, Gruber H, Rizzini L, Oravecz A, Funk M, Albert A, Cloix C, Jenkins GI, Oakeley EJ, Seidlitz HK, Nagy F, Ulm R (2009) Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J 28(5):591–601.  https://doi.org/10.1038/emboj.2009.4 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fernandez MB, Tossi V, Lamattina L, Cassia R (2016) A comprehensive phylogeny reveals functional conservation of the UV-B photoreceptor UVR8 from green algae to higher plants. Front Plant Sci 7:1698.  https://doi.org/10.3389/fpls.2016.01698 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol 133(4):1420–1428.  https://doi.org/10.1104/pp.103.030049 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50(1):151–158.  https://doi.org/10.1016/0014-4827(68)90403-5 CrossRefPubMedGoogle Scholar
  19. Heijde M, Binkert M, Yin R, Ares-Orpel F, Rizzini L, Van De Slijke E, Persiau G, Nolf J, Gevaert K, De Jaeger G, Ulm R (2013) Constitutively active UVR8 photoreceptor variant in Arabidopsis. Proc Natl Acad Sci USA 110(50):20326–20331CrossRefPubMedGoogle Scholar
  20. Hideg E, Jansen MA, Strid A (2013) UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci 18(2):107–115.  https://doi.org/10.1016/j.tplants.2012.09.003 CrossRefPubMedGoogle Scholar
  21. Hidema J, Taguchi T, Ono T, Teranishi M, Yamamoto K, Kumagai T (2007) Increase in CPD photolyase activity functions effectively to prevent growth inhibition caused by UVB radiation. Plant J 50(1):70–79.  https://doi.org/10.1111/j.1365-313X.2007.03041.x CrossRefPubMedGoogle Scholar
  22. Ishizaki K, Chiyoda S, Yamato KT, Kohchi T (2008) Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology. Plant Cell Physiol 49(7):1084–1091.  https://doi.org/10.1093/pcp/pcn085 CrossRefPubMedGoogle Scholar
  23. Ishizaki K, Nonomura M, Kato H, Yamato KT, Kohchi T (2012) Visualization of auxin-mediated transcriptional activation using a common auxin-responsive reporter system in the liverwort Marchantia polymorpha. J Plant Res 125(5):643–651.  https://doi.org/10.1007/s10265-012-0477-7 CrossRefPubMedGoogle Scholar
  24. Ishizaki K, Johzuka-Hisatomi Y, Ishida S, Iida S, Kohchi T (2013) Homologous recombination-mediated gene targeting in the liverwort Marchantia polymorpha L. Sci Rep 3:1532.  https://doi.org/10.1038/srep01532 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ishizaki K, Nishihama R, Ueda M, Inoue K, Ishida S, Nishimura Y, Shikanai T, Kohchi T (2015) Development of Gateway binary vector series with four different selection markers for the liverwort Marchantia polymorpha. PLoS One 10(9):e0138876.  https://doi.org/10.1371/journal.pone.0138876 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ishizaki K, Nishihama R, Yamato KT, Kohchi T (2016) Molecular genetic tools and techniques for Marchantia polymorpha research. Plant Cell Physiol 57(2):262–270.  https://doi.org/10.1093/pcp/pcv097 CrossRefPubMedGoogle Scholar
  27. Jansen M (2002) Ultraviolet-B radiation effects on plants: induction of morphogenic responses. Physiol Plant 116:423–429.  https://doi.org/10.1034/j.1399-3054.2002.1160319.x CrossRefGoogle Scholar
  28. Jenkins GI (2008) Environmental regulation of flavonoid biosynthesis. In: Givens DI, Minihane AM, Shaw E (eds) Health benefits of organic food: effects of the environment. CABI, Wallingford, pp 1147–1155Google Scholar
  29. Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60:407–431.  https://doi.org/10.1146/annurev.arplant.59.032607.092953 CrossRefPubMedGoogle Scholar
  30. Jenkins GI (2014) The UV-B photoreceptor UVR8: from structure to physiology. Plant Cell 26(1):21–37.  https://doi.org/10.1105/tpc.113.119446 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jenkins GI, Brown BA (2007) UV-B perception and signal transduction. Light and plant development. Annual Plant Review, vol 30. Blackwell, Oxford, pp 155–182.  https://doi.org/10.1002/9780470988893.ch7 CrossRefGoogle Scholar
  32. Jordan BR (1996) The effects of ultraviolet-B radiation on plants: a molecular perspective. Adv Bot Res 22:97–162CrossRefGoogle Scholar
  33. Kaiserli E, Jenkins GI (2007) UV-B promotes rapid nuclear translocation of the Arabidopsis UV-B specific signaling component UVR8 and activates its function in the nucleus. Plant Cell 19(8):2662–2673.  https://doi.org/10.1105/tpc.107.053330 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kliebenstein DJ, Lim JE, Landry LG, Last RL (2002) Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chromatin condensation 1. Plant Physiol 130(1):234–243.  https://doi.org/10.1104/pp.005041 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kubo H, Nozawa S, Hiwatashi T, Kondou Y, Nakabayashi R, Mori T, Saito K, Takanashi K, Kohchi T, Ishizaki K (2018) Biosynthesis of riccionidins and marchantins is regulated by R2R3-MYB transcription factors in Marchantia polymorpha. J Plant Res 131(5):849–864.  https://doi.org/10.1007/s10265-018-1044-7 CrossRefPubMedGoogle Scholar
  36. Kubota A, Ishizaki K, Hosaka M, Kohchi T (2013) Efficient Agrobacterium-mediated transformation of the liverwort Marchantia polymorpha using regenerating thalli. Biosci Biotechnol Biochemy 77(1):167–172.  https://doi.org/10.1271/bbb.120700 CrossRefGoogle Scholar
  37. Kucera B, Leubner-Metzger G, Wellmann E (2003) Distinct ultraviolet-signaling pathways in bean leaves. DNA damage is associated with beta-1,3-glucanase gene induction, but not with flavonoid formation. Plant Physiol 133(4):1445–1452.  https://doi.org/10.1104/pp.103.029520 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Li N, Teranishi M, Yamaguchi H, Matsushita T, Watahiki MK, Tsuge T, Li SS, Hidema J (2015) UV-B-induced CPD photolyase gene expression is regulated by UVR8-dependent and -independent pathways in Arabidopsis. Plant Cell Physiol 56(10):2014–2023.  https://doi.org/10.1093/pcp/pcv121 CrossRefPubMedGoogle Scholar
  39. Oravecz A, Baumann A, Mate Z, Brzezinska A, Molinier J, Oakeley EJ, Adam E, Schafer E, Nagy F, Ulm R (2006) CONSTITUTIVELY PHOTOMORPHOGENIC 1 is required for the UV-B response in Arabidopsis. Plant Cell 18(8):1975–1990.  https://doi.org/10.1105/tpc.105.040097 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Paul ND, Gwyn-Jones D (2003) Ecological roles of solar UV radiation: towards an integrated approach. Trends Ecol Evol 18:48–55CrossRefGoogle Scholar
  41. Qiu YL, Li L, Wang B et al (2006) The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci USA 103(42):15511–15516.  https://doi.org/10.1073/pnas.0603335103 CrossRefGoogle Scholar
  42. Rizzini L, Favory JJ, Cloix C, Faggionato D, O’Hara A, Kaiserli E, Baumeister R, Schafer E, Nagy F, Jenkins GI, Ulm R (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332(6025):103–106.  https://doi.org/10.1126/science.1200660 CrossRefPubMedGoogle Scholar
  43. Robson TM, Klem K, Urban O, Jansen MA (2015) Re-interpreting plant morphological responses to UV-B radiation. Plant Cell Environ 38(5):856–866.  https://doi.org/10.1111/pce.12374 CrossRefPubMedGoogle Scholar
  44. Rozema J, van de Staaij J, Bjorn LO, Caldwell M (1997) UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol Evol 12(1):22–28.  https://doi.org/10.1016/S0169-5347(96)10062-8 CrossRefPubMedGoogle Scholar
  45. Saint-Marcoux D, Proust H, Dolan L, Langdale JA (2015) Identification of reference genes for real-time quantitative PCR experiments in the liverwort Marchantia polymorpha. PLoS One 10(3):e0118678.  https://doi.org/10.1371/journal.pone.0118678 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sancar A (2004) Photolyase and cryptochrome blue-light photoreceptors. Adv Protein Chem 69:73–100.  https://doi.org/10.1016/S0065-3233(04)69003-6 CrossRefPubMedGoogle Scholar
  47. Soriano G, Cloix C, Heilmann M, Nunez-Olivera E, Martinez-Abaigar J, Jenkins GI (2017) Evolutionary conservation of structure and function of the UVR8 photoreceptor from the liverwort Marchantia polymorpha and the moss Physcomitrella patens. New Phytol.  https://doi.org/10.1111/nph.14767 CrossRefPubMedGoogle Scholar
  48. Stracke R, Favory JJ, Gruber H, Bartelniewoehner L, Bartels S, Binkert M, Funk M, Weisshaar B, Ulm R (2010) The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation. Plant Cell Environ 33(1):88–103.  https://doi.org/10.1111/j.1365-3040.2009.02061.x CrossRefPubMedGoogle Scholar
  49. Tilbrook K, Dubois M, Crocco CD, Yin R, Chappuis R, Allorent G, Schmid-Siegert E, Goldschmidt-Clermont M, Ulm R (2016) UV-B perception and acclimation in Chlamydomonas reinhardtii. Plant Cell 28(4):966–983.  https://doi.org/10.1105/tpc.15.00287 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ulm R, Nagy F (2005) Signalling and gene regulation in response to ultraviolet light. Curr Opin Plant Biol 8(5):477–482.  https://doi.org/10.1016/j.pbi.2005.07.004 CrossRefPubMedGoogle Scholar
  51. Wickett NJ, Mirarab S, Nguyen N et al (2014) Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc Natl Acad Sci USA 111(45):E4859–E4868.  https://doi.org/10.1073/pnas.1323926111 CrossRefPubMedGoogle Scholar
  52. Wu D, Hu Q, Yan Z, Chen W, Yan C, Huang X, Zhang J, Yang P, Deng H, Wang J, Deng X, Shi Y (2012) Structural basis of ultraviolet-B perception by UVR8. Nature 484(7393):214–219.  https://doi.org/10.1038/nature10931 CrossRefPubMedGoogle Scholar
  53. Yin R, Ulm R (2017) How plants cope with UV-B: from perception to response. Curr Opin Plant Biol 37:42–48.  https://doi.org/10.1016/j.pbi.2017.03.013 CrossRefPubMedGoogle Scholar
  54. Yin R, Arongaus AB, Binkert M, Ulm R (2015) Two distinct domains of the UVR8 photoreceptor interact with COP1 to initiate UV-B signaling in Arabidopsis. Plant Cell 27(1):202–213.  https://doi.org/10.1105/tpc.114.133868 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Yin R, Skvortsova MY, Loubery S, Ulm R (2016) COP1 is required for UV-B-induced nuclear accumulation of the UVR8 photoreceptor. Proc Natl Acad Sci USA 113(30):E4415–E4422.  https://doi.org/10.1073/pnas.1607074113 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Youichi Kondou
    • 1
    Email author
  • Yuta Miyagi
    • 1
  • Takeshi Morito
    • 1
  • Kenta Fujihira
    • 1
  • Wataru Miyauchi
    • 1
  • Asami Moriyama
    • 1
  • Takuya Terasawa
    • 1
  • Sakiko Ishida
    • 2
  • Kosei Iwabuchi
    • 4
  • Hiroyoshi Kubo
    • 5
  • Ryuichi Nishihama
    • 2
  • Kimitsune Ishizaki
    • 3
  • Takayuki Kohchi
    • 2
  1. 1.Department of BiosciencesKanto Gakuin University College of Science and EngineeringYokohamaJapan
  2. 2.Graduate School of BiostudiesKyoto UniversityKyotoJapan
  3. 3.Graduate School of ScienceKobe UniversityKobeJapan
  4. 4.Faculty of Science and EngineeringKonan UniversityKobeJapan
  5. 5.Department of Biology, Faculty of ScienceShinshu UniversityMatsumotoJapan

Personalised recommendations