Advertisement

Planta

, Volume 249, Issue 1, pp 9–20 | Cite as

Isoprenyl diphosphate synthases: the chain length determining step in terpene biosynthesis

  • Raimund NagelEmail author
  • Axel Schmidt
  • Reuben J. Peters
Review
  • 203 Downloads
Part of the following topical collections:
  1. Terpenes and Isoprenoids

Abstract

Main conclusion

This review summarizes the recent developments in the study of isoprenyl diphosphate synthases with an emphasis on analytical techniques, product length determination, and the physiological consequences of manipulating expression in planta.

The highly diverse structures of all terpenes are synthesized from the five carbon precursors dimethylallyl diphosphate and a varying number of isopentenyl diphosphate units through 1’-4 alkylation reactions. These elongation reactions are catalyzed by isoprenyl diphosphate synthases (IDS). IDS are classified depending on the configuration of the ensuing double bond as trans- and cis-IDS. In addition, IDS are further stratified by the length of their prenyl diphosphate product. This review discusses analytical techniques for the determination of product length and the factors that control product length, with an emphasis on alternative mechanisms. With recent advances in analytics, multiple IDS of Arabidopsis thaliana have been recently reinvestigated and demonstrated to yield products of different lengths than originally reported, which is summarized here. As IDS dictate prenyl diphosphate length and thereby which class of terpenes is ultimately produced, another focus of this review is the impact that altering IDS expression has on terpenoid natural product accumulation. Finally, recent findings regarding the ability of a few IDS to not catalyze 1’-4 alkylation reactions, but instead produce irregular products, with unusual connectivity, or act as terpene synthases, are also discussed.

Keywords

Isoprenyl diphosphate synthases Terpenes Isoprenoids Prenyl diphosphates Arabidopsis 

References

  1. Aaron JA, Christianson DW (2010) Trinuclear metal clusters in catalysis by terpenoid synthases. Pure Appl Chem 82(8):1585–1597.  https://doi.org/10.1351/pac-con-09-09-37 Google Scholar
  2. Akhtar TA, Matsuba Y, Schauvinhold I, Yu G, Lees HA, Klein SE, Pichersky E (2013) The tomato cis–prenyltransferase gene family. Plant J 73(4):640–652.  https://doi.org/10.1111/tpj.12063 Google Scholar
  3. Arigoni D, Sagner S, Latzel C, Eisenreich W, Bacher A, Zenk MH (1997) Terpenoid biosynthesis from 1-deoxy-d-xylulose in higher plants by intramolecular skeletal rearrangement. Proc Natl Acad Sci 94(20):10600–10605.  https://doi.org/10.1073/pnas.94.20.10600 Google Scholar
  4. Banyai W, Kirdmanee C, Mii M, Supaibulwatana K (2010) Overexpression of farnesyl pyrophosphate synthase (FPS) gene affected artemisinin content and growth of Artemisia annua L. Plant Cell, Tissue Organ Cult 103(2):255–265.  https://doi.org/10.1007/s11240-010-9775-8 Google Scholar
  5. Barbar A, Couture M, Sen SE, Beliveau C, Nisole A, Bipfubusa M, Cusson M (2013) Cloning, expression and characterization of an insect geranylgeranyl diphosphate synthase from Choristoneura fumiferana. Insect Biochem Mol Biol 43(10):947–958.  https://doi.org/10.1016/j.ibmb.2013.07.004 Google Scholar
  6. Behnke K, Ehlting B, Teuber M, Bauerfeind M, Louis S, Hänsch R, Polle A, Bohlmann J, Schnitzler J-P (2007) Transgenic, non-isoprene emitting poplars don’t like it hot. Plant J 51(3):485–499.  https://doi.org/10.1111/j.1365-313X.2007.03157.x Google Scholar
  7. Benz J, Fischer I, Rüdiger W (1983) Determination of phytyl diphosphate and geranylgeranyl diphosphate in etiolated oat seedlings. Phytochemistry 22(12):2801–2804.  https://doi.org/10.1016/S0031-9422(00)97700-8 Google Scholar
  8. Beran F, Rahfeld P, Luck K, Nagel R, Vogel H, Wielsch N, Irmisch S, Ramasamy S, Gershenzon J, Heckel DG, Kollner TG (2016) Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle. Proc Natl Acad Sci USA 113(11):2922–2927.  https://doi.org/10.1073/pnas.1523468113 Google Scholar
  9. Berthelot K, Estevez Y, Deffieux A, Peruch F (2012) Isopentenyl diphosphate isomerase: A checkpoint to isoprenoid biosynthesis. Biochimie 94(8):1621–1634.  https://doi.org/10.1016/j.biochi.2012.03.021 Google Scholar
  10. Camagna M, Grundmann A, Bär C, Koschmieder J, Beyer P, Welsch R (2018) Enzyme fusion removes competition for geranylgeranyl diphosphate in carotenogenesis. Plant Physiol.  https://doi.org/10.1104/pp.18.01026
  11. Chan Y-T, Ko T-P, Yao S-H, Chen Y-W, Lee C-C, Wang AHJ (2017) Crystal structure and potential head-to-middle condensation function of a Z,Z-Farnesyl diphosphate synthase. ACS Omega 2(3):930–936.  https://doi.org/10.1021/acsomega.6b00562 Google Scholar
  12. Chang TH, Hsieh FL, Ko TP, Teng KH, Liang PH, Wang AHJ (2010) Structure of a heterotetrameric geranyl pyrophosphate synthase from mint (Mentha piperita) reveals intersubunit regulation. Plant Cell 22(2):454–467.  https://doi.org/10.1105/tpc.109.071738 Google Scholar
  13. Chang WC, Song H, Liu HW, Liu P (2013) Current development in isoprenoid precursor biosynthesis and regulation. Curr Opin Chem Biol 17(4):571–579.  https://doi.org/10.1016/j.cbpa.2013.06.020 Google Scholar
  14. Chen Q, Fan D, Wang G (2015) Heteromeric Geranyl(geranyl) diphosphate synthase is involved in monoterpene biosynthesis in Arabidopsis Flowers. Mol Plant.  https://doi.org/10.1016/j.molp.2015.05.001
  15. Christianson DW (2008) Unearthing the roots of the terpenome. Curr Opin Chem Biol 12(2):141–150.  https://doi.org/10.1016/j.cbpa.2007.12.008 Google Scholar
  16. Closa M, Vranova E, Bortolotti C, Bigler L, Arro M, Ferrer A, Gruissem W (2010) The Arabidopsis thaliana FPP synthase isozymes have overlapping and specific functions in isoprenoid biosynthesis, and complete loss of FPP synthase activity causes early developmental arrest. Plant J 63(3):512–525.  https://doi.org/10.1111/j.1365-313X.2010.04253.x Google Scholar
  17. Cunillera N, Arro M, Delourme D, Karst F, Boronat A, Ferrer A (1996) Arabidopsis thaliana contains two differentially expressed farnesyl-diphosphate synthase genes. J Biol Chem 271(13):7774–7780Google Scholar
  18. Demissie ZA, Erland LAE, Rheault MR, Mahmoud SS (2013) The biosynthetic origin of irregular monoterpenes in lavandula isolation and biochemical characterization of a novel cis-prenyl diphosphate synthase gene, lavandulyl diphosphate synthase. J Biol Chem 288(9):6333–6341.  https://doi.org/10.1074/jbc.M112.431171 Google Scholar
  19. Erickson HK, Poulter CD (2003) Chrysanthemyl diphosphate synthase. The relationship among chain elongation, branching, and cyclopropanation reactions in the isoprenoid biosynthetic pathway. J Am Chem Soc 125(23):6886-6888.  https://doi.org/10.1021/ja034520g
  20. Frick S, Nagel R, Schmidt A, Bodemann RR, Rahfeld P, Pauls G, Brandt W, Gershenzon J, Boland W, Burse A (2013) Metal ions control product specificity of isoprenyl diphosphate synthases in the insect terpenoid pathway. Proc Natl Acad Sci USA 110(11):4194–4199.  https://doi.org/10.1073/pnas.1221489110 Google Scholar
  21. Gao J, Ko T-P, Chen L, Malwal SR, Zhang J, Hu X, Qu F, Liu W, Huang J-W, Cheng Y-S, Chen C-C, Yang Y, Zhang Y, Oldfield E, Guo R-T (2018) “Head-to-Middle” and “Head-to-Tail” cis-Prenyl transferases: structure of isosesquilavandulyl diphosphate synthase. Angew Chem Int Ed 57(3):683–687.  https://doi.org/10.1002/anie.201710185 Google Scholar
  22. Ghirardo A, Koch K, Taipale R, Zimmer INA, Schnitzler J-P, Rinne J (2010) Determination of de novo and pool emissions of terpenes from four common boreal/alpine trees by 13CO2 labelling and PTR-MS analysis. Plant, Cell Environ 33(5):781–792.  https://doi.org/10.1111/j.1365-3040.2009.02104.x Google Scholar
  23. Gilg AB, Bearfield JC, Tittiger C, Welch WH, Blomquist GJ (2005) Isolation and functional expression of an animal geranyl diphosphate synthase and its role in bark beetle pheromone biosynthesis. Proc Natl Acad Sci USA 102(28):9760–9765.  https://doi.org/10.1073/pnas.0503277102 Google Scholar
  24. Gilg AB, Tittiger C, Blomquist GJ (2009) Unique animal prenyltransferase with monoterpene synthase activity. Naturwissenschaften 96(6):731–735.  https://doi.org/10.1007/s00114-009-0521-1 Google Scholar
  25. Gutensohn M, Orlova I, Nguyen TTH, Davidovich-Rikanati R, Ferruzzi MG, Sitrit Y, Lewinsohn E, Pichersky E, Dudareva N (2013) Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits. Plant J 75(3):351–363.  https://doi.org/10.1111/tpj.12212 Google Scholar
  26. Gutensohn M, Nguyen TTH, McMahon RD, Kaplan I, Pichersky E, Dudareva N (2014) Metabolic engineering of monoterpene biosynthesis in tomato fruits via introduction of the non-canonical substrate neryl diphosphate. Metab Eng 24:107–116.  https://doi.org/10.1016/j.ymben.2014.05.008 Google Scholar
  27. Han JL, Liu BY, Ye HC, Wang H, Li ZQ, Li GF (2006) Effects of overexpression of the endogenous farnesyl diphosphate synthase on the artemisinin content in Artemisia annua L. J Integr Plant Biol 48(4):482–487.  https://doi.org/10.1111/j.1744-7909.2006.00208.x Google Scholar
  28. Hemmerlin A, Rivera SB, Erickson HK, Poulter CD (2003) Enzymes encoded by the farnesyl diphosphate synthase gene family in the big sagebrush Artemisia tridentata ssp spiciformis. J Biol Chem 278(34):32132–32140.  https://doi.org/10.1074/jbc.M213045200 Google Scholar
  29. Hemmerlin A, Harwood JL, Bach TJ (2012) A raison d’être for two distinct pathways in the early steps of plant isoprenoid biosynthesis? Prog Lipid Res 51(2):95–148.  https://doi.org/10.1016/j.plipres.2011.12.001 Google Scholar
  30. Hsieh FL, Chang TH, Ko TP, Wang AHJ (2011) Structure and mechanism of an Arabidopsis Medium/long-chain-length prenyl pyrophosphate synthase. Plant Physiol 155(3):1079–1090.  https://doi.org/10.1104/pp.110.168799 Google Scholar
  31. Huang AC, Kautsar SA, Hong YJ, Medema MH, Bond AD, Tantillo DJ, Osbourn A (2017) Unearthing a sesterterpene biosynthetic repertoire in the Brassicaceae through genome mining reveals convergent evolution. Proc Natl Acad Sci.  https://doi.org/10.1073/pnas.1705567114 Google Scholar
  32. Jassbi AR, Gase K, Hettenhausen C, Schmidt A, Baldwin IT (2008) Silencing geranylgeranyl diphosphate synthase in Nicotiana attenuata dramatically impairs resistance to tobacco hornworm. Plant Physiol 146(3):974–986.  https://doi.org/10.1104/pp.107.108811 Google Scholar
  33. Kai GY, Xu H, Zhou CC, Liao P, Xiao JB, Luo XQ, You LJ, Zhang L (2011) Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. Metab Eng 13(3):319–327.  https://doi.org/10.1016/j.ymben.2011.02.003 Google Scholar
  34. Kang JH, Gonzales-Vigil E, Matsuba Y, Pichersky E, Barry CS (2014) Determination of Residues responsible for substrate and product specificity of Solanum habrochaites Short-Chain cis-Prenyltransferases. Plant Physiol 164(1):80–91.  https://doi.org/10.1104/pp.113.230466 Google Scholar
  35. Keeling CI, Chiu CC, Aw T, Li M, Henderson H, Tittiger C, Weng HB, Blomquist GJ, Bohlmann J (2013) Frontalin pheromone biosynthesis in the mountain pine beetle, Dendroctonus ponderosae, and the role of isoprenyl diphosphate synthases. Proc Natl Acad Sci USA 110(47):18838–18843.  https://doi.org/10.1073/pnas.1316498110 Google Scholar
  36. Keim V, Manzano D, Fernandez FJ, Closa M, Andrade P, Caudepon D, Bortolotti C, Vega MC, Arro M, Ferrer A (2012) Characterization of Arabidopsis FPS Isozymes and FPS Gene Expression Analysis Provide Insight into the Biosynthesis of Isoprenoid Precursors in Seeds. Plos One.  https://doi.org/10.1371/journal.pone.0049109
  37. Kim OT, Bang KH, Jung SJ, Kim YC, Hyun DY, Kim SH, Cha SW (2010) Molecular characterization of ginseng farnesyl diphosphate synthase gene and its up-regulation by methyl jasmonate. Biol Plant 54(1):47–53Google Scholar
  38. Köksal M, Hu H, Coates RM, Peters RJ, Christianson DW (2011) Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase. Nat Chem Biol 7(7):431-433. http://www.nature.com/nchembio/journal/v7/n7/abs/nchembio.578.html#supplementary-information
  39. Kumar SR, Shilpashree HB, Nagegowda DA (2018) Terpene moiety enhancement by overexpression of geranyl(geranyl) diphosphate synthase and geraniol synthase elevates monomeric and dimeric monoterpene indole alkaloids in transgenic Catharanthus roseus. Front Plant Sci 9:(942).  https://doi.org/10.3389/fpls.2018.00942 Google Scholar
  40. Kurokawa T, Ogura K, Seto S (1971) Formation of polyprenyl phosphates by a cell-free enzyme of. Biochem Biophys Res Commun 45(1):251–257.  https://doi.org/10.1016/0006-291x(71)90077-5 Google Scholar
  41. Lancaster J, Khrimian A, Young S, Lehner B, Luck K, Wallingford A, Ghosh SKB, Zerbe P, Muchlinski A, Marek PE, Sparks ME, Tokuhisa JG, Tittiger C, Kollner TG, Weber DC, Gundersen-Rindal DE, Kuhar TP, Tholl D (2018a) De novo formation of an aggregation pheromone precursor by an isoprenyl diphosphate synthase-related terpene synthase in the harlequin bug. Proc Natl Acad Sci USA 115(37):E8634–E8641.  https://doi.org/10.1073/pnas.1800008115 Google Scholar
  42. Lancaster J, Lehner B, Khrimian A, Muchlinski A, Luck K, Köllner TG, Weber DC, Gundersen-Rindal DE, Tholl D (2018b) An IDS-Type Sesquiterpene Synthase Produces the Pheromone Precursor (Z)-α-Bisabolene in Nezara viridula. J Chem Ecol.  https://doi.org/10.1007/s10886-018-1019-0
  43. Lange BM, Mahmoud SS, Wildung MR, Turner GW, Davis EM, Lange I, Baker RC, Boydston RA, Croteau RB (2011) Improving peppermint essential oil yield and composition by metabolic engineering. Proc Natl Acad Sci USA 108(41):16944–16949.  https://doi.org/10.1073/pnas.1111558108 Google Scholar
  44. Liang PH, Ko TP, Wang AHJ (2002) Structure, mechanism and function of prenyltransferases. Eur J Biochem 269(14):3339–3354.  https://doi.org/10.1046/j.1432-1033.2002.03014.x Google Scholar
  45. Lombard J, Moreira D (2011) Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life. Mol Biol Evol 28(1):87–99.  https://doi.org/10.1093/molbev/msq177 Google Scholar
  46. Malwal SR, Gao J, Hu X, Yang Y, Liu W, Huang J-W, Ko T-P, Li L, Chen C-C, O’Dowd B, Khade RL, Zhang Y, Zhang Y, Oldfield E, Guo R-T (2018) Catalytic role of conserved asparagine, glutamine, serine, and tyrosine residues in isoprenoid biosynthesis enzymes. ACS Catalysis 8(5):4299–4312.  https://doi.org/10.1021/acscatal.8b00543 Google Scholar
  47. Mann FM, Thomas JA, Peters RJ (2011) Rv0989c encodes a novel (E)-geranyl diphosphate synthase facilitating decaprenyl diphosphate biosynthesis in Mycobacterium tuberculosis. FEBS Lett 585(3):549–554.  https://doi.org/10.1016/j.febslet.2011.01.007 Google Scholar
  48. Manzano D, Busquets A, Closa M, Hoyerova K, Schaller H, Kaminek M, Arro M, Ferrer A (2006) Overexpression of farnesyl diphosphate synthase in Arabidopsis mitochondria triggers light-dependent lesion formation and alters cytokinin homeostasis. Plant Mol Biol 61(1–2):195–213.  https://doi.org/10.1007/s11103-006-6263-y Google Scholar
  49. Martin D, Tholl D, Gershenzon J, Bohlmann J (2002) Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of norway spruce stems. Plant Physiol 129(3):1003–1018.  https://doi.org/10.1104/pp.011001 Google Scholar
  50. Masferrer A, Arro M, Manzano D, Schaller H, Fernandez-Busquets X, Moncalean P, Fernandez B, Cunillera N, Boronat A, Ferrer A (2002) Overexpression of Arabidopsis thaliana farnesyl diphosphate synthase (FPS1S) in transgenic Arabidopsis induces a cell death/senescence-like response and reduced cytokinin levels. Plant J 30(2):123–132.  https://doi.org/10.1046/j.1365-313X.2002.01273.x Google Scholar
  51. Nagel R, Gershenzon J, Schmidt A (2012) Nonradioactive assay for detecting isoprenyl diphosphate synthase activity in crude plant extracts using liquid chromatography coupled with tandem mass spectrometry. Anal Biochem 422(1):33–38.  https://doi.org/10.1016/j.ab.2011.12.037 Google Scholar
  52. Nagel R, Berasategui A, Paetz C, Gershenzon J, Schmidt A (2014) Overexpression of an isoprenyl diphosphate synthase in spruce leads to unexpected terpene diversion products that function in plant defense. Plant Physiol 164(2):555–569.  https://doi.org/10.1104/pp.113.228940 Google Scholar
  53. Nagel R, Bernholz C, Vranova E, Kosuth J, Bergau N, Ludwig S, Wessjohann L, Gershenzon J, Tissier A, Schmidt A (2015) Arabidopsis thaliana isoprenyl diphosphate synthases produce the C25 intermediate geranylfarnesyl diphosphate. Plant J 84(5):847–859.  https://doi.org/10.1111/tpj.13064 Google Scholar
  54. Nagel R, Thomas J, Adekunle F, Mann F, Peters R (2018) Arginine in the FARM and SARM: a role in chain-length determination for arginine in the aspartate-rich motifs of Isoprenyl diphosphate synthases from Mycobacterium tuberculosis. Molecules 23:(10).  https://doi.org/10.3390/molecules23102546 Google Scholar
  55. Nogues I, Brilli F, Loreto F (2006) Dimethylallyl diphosphate and geranyl diphosphate pools of plant species characterized by different isoprenoid emissions. Plant Physiol 141(2):721–730.  https://doi.org/10.1104/pp.105.073213 Google Scholar
  56. Ogawa T, Yoshimura T, Hemmi H (2011) Connected cavity structure enables prenyl elongation across the dimer interface in mutated geranylfarnesyl diphosphate synthase from Methanosarcina mazei. Biochem Biophys Res Commun 409(2):333–337.  https://doi.org/10.1016/j.bbrc.2011.05.018 Google Scholar
  57. Ohnuma S, Koyama T, Ogura K (1993) Alteration of the product specificities of prenyltransferases by metal-ions. Biochem Biophys Res Commun 192(2):407–412.  https://doi.org/10.1006/bbrc.1993.1430 Google Scholar
  58. Oldfield E, Lin F-Y (2012) Terpene Biosynthesis: modularity Rules. Angew Chem Int Ed 51(5):1124–1137.  https://doi.org/10.1002/anie.201103110 Google Scholar
  59. Orlova I, Nagegowda DA, Kish CM, Gutensohn M, Maeda H, Varbanova M, Fridman E, Yamaguchi S, Hanada A, Kamiya Y, Krichevsky A, Citovsky V, Pichersky E, Dudareva N (2009) The small subunit of snapdragon geranyl diphosphate synthase modifies the chain length specificity of tobacco geranylgeranyl diphosphate synthase in planta. Plant Cell 21(12):4002–4017.  https://doi.org/10.1105/tpc.109.071282 Google Scholar
  60. Ozaki T, Zhao P, Shinada T, Nishiyama M, Kuzuyama T (2014) Cyclolavandulyl skeleton biosynthesis via both condensation and cyclization catalyzed by an unprecedented member of the cis-isoprenyl diphosphate synthase superfamily. J Am Chem Soc 136(13):4837–4840.  https://doi.org/10.1021/ja500270m Google Scholar
  61. Pan JJ, Ramamoorthy G, Poulter CD (2013) Dependence of the product chain-length on detergents for long-chain E-polyprenyl diphosphate synthases. Biochemistry 52(29):5002–5008.  https://doi.org/10.1021/bi400681d Google Scholar
  62. Richter A, Seidl-Adams I, Köllner T, Schaff C, Tumlinson J, Degenhardt J (2015) A small, differentially regulated family of farnesyl diphosphate synthases in maize (Zea mays) provides farnesyl diphosphate for the biosynthesis of herbivore-induced sesquiterpenes. Planta.  https://doi.org/10.1007/s00425-015-2254-z
  63. Rivera SB, Swedlund BD, King GJ, Bell RN, Hussey CE, Shattuck-Eidens DM, Wrobel WM, Peiser GD, Poulter CD (2001) Chrysanthemyl diphosphate synthase: isolation of the gene and characterization of the recombinant non-head-to-tail monoterpene synthase from Chrysanthemum cinerariaefolium. Proc Natl Acad Sci USA 98(8):4373–4378.  https://doi.org/10.1073/pnas.071543598 Google Scholar
  64. Rivera-Perez C, Nyati P, Noriega FG (2015) A corpora allata farnesyl diphosphate synthase in mosquitoes displaying a metal ion dependent substrate specificity. Insect Biochem Mol Biol 64:44–50.  https://doi.org/10.1016/j.ibmb.2015.07.010 Google Scholar
  65. Rodríguez-Concepción M (2006) Early steps in isoprenoid biosynthesis: multilevel regulation of the supply of common precursors in plant cells. Phytochem Rev 5(1):1–15.  https://doi.org/10.1007/s11101-005-3130-4 Google Scholar
  66. Rosenstiel TN, Fisher AJ, Fall R, Monson RK (2002) Differential accumulation of dimethylallyl diphosphate in leaves and needles of isoprene- and methylbutenol-emitting and nonemitting species. Plant Physiol 129(3):1276–1284.  https://doi.org/10.1104/pp.002717 Google Scholar
  67. Ruiz-Sola MÁ, Coman D, Beck G, Barja MV, Colinas M, Graf A, Welsch R, Rütimann P, Bühlmann P, Bigler L, Gruissem W, Rodríguez-Concepción M, Vranová E (2015) Arabidopsis GERANYLGERANYL DIPHOSPHATE SYNTHASE 11 is a hub isozyme required for the production of most photosynthesis-related isoprenoids. New Phytol  https://doi.org/10.1111/nph.13580
  68. Ruppel NJ, Kropp KN, Davis PA, Martin AE, Luesse DR, Hangarter RP (2013) Mutations in Geranylgeranyl diphosphate synthase 1 affect chloroplast development in Arabidopsis thaliana (brassicaceae). Am J Bot 100(10):2074–2084.  https://doi.org/10.3732/ajb.1300124 Google Scholar
  69. Sallaud C, Rontein D, Onillon S, Jabes F, Duffe P, Giacalone C, Thoraval S, Escoffier C, Herbette G, Leonhardt N, Causse M, Tissier A (2009) A Novel Pathway for Sesquiterpene Biosynthesis from Z, Z-Farnesyl Pyrophosphate in the Wild Tomato Solanum habrochaites. Plant Cell 21(1):301–317.  https://doi.org/10.1105/tpc.107.057885 Google Scholar
  70. Schaller H (2003) The role of sterols in plant growth and development. Prog Lipid Res 42(3):163–175.  https://doi.org/10.1016/S0163-7827(02)00047-4 Google Scholar
  71. Schilmiller AL, Schauvinhold I, Larson M, Xu R, Charbonneau AL, Schmidt A, Wilkerson C, Last RL, Pichersky E (2009) Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proc Natl Acad Sci USA 106(26):10865–10870.  https://doi.org/10.1073/pnas.0904113106 Google Scholar
  72. Schmidt A, Gershenzon J (2007) Cloning and characterization of isoprenyl diphosphate synthases with farnesyl diphosphate and geranylgeranyl diphosphate synthase activity from Norway spruce (Picea abies) and their relation to induced oleoresin formation. Phytochemistry 68(21):2649–2659.  https://doi.org/10.1016/j.phytochem.2007.05.037 Google Scholar
  73. Schmidt A, Gershenzon J (2008) Cloning and characterization of two different types of geranyl diphosphate synthases from Norway spruce (Picea abies). Phytochemistry 69(1):49–57.  https://doi.org/10.1016/j.phytochem.2007.06.022 Google Scholar
  74. Schmidt A, Wachtler B, Temp U, Krekling T, Seguin A, Gershenzon J (2010) A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Picea abies. Plant Physiol 152(2):639–655.  https://doi.org/10.1104/pp.109.144691 Google Scholar
  75. Schramek N, Wang H, Römisch-Margl W, Keil B, Radykewicz T, Winzenhörlein B, Beerhues L, Bacher A, Rohdich F, Gershenzon J, Liu B, Eisenreich W (2010) Artemisinin biosynthesis in growing plants of Artemisia annua A 13CO2 study. Phytochemistry 71(2–3):179–187.  https://doi.org/10.1016/j.phytochem.2009.10.015 Google Scholar
  76. Sen SE, Brown DC, Sperry AE, Hitchcock JR (2007a) Prenyltransferase of larval and adult M-sexta corpora allata. Insect Biochem Mol Biol 37(1):29–40.  https://doi.org/10.1016/j.ibmb.2006.09.010 Google Scholar
  77. Sen SE, Cusson M, Trobaugh C, Beliveau C, Richard T, Graham W, Mimms A, Roberts G (2007b) Purification, properties and heteromeric association of type-1 and type-2 lepidopteran farnesyl diphosphate synthases. Insect Biochem Mol Biol 37(8):819–828.  https://doi.org/10.1016/j.ibmb.2007.05.012 Google Scholar
  78. Sen SE, Trobaugh C, Beliveau C, Richard T, Cusson M (2007c) Cloning, expression and characterization of a dipteran farnesyl diphosphate synthase. Insect Biochem Mol Biol 37(11):1198–1206.  https://doi.org/10.1016/j.ibmb.2007.07.011 Google Scholar
  79. Shao J, Chen Q-W, Lv H-J, He J, Liu Z-F, Lu Y-N, Liu H-L, Wang G-D, Wang Y (2017) (+)-Thalianatriene and (−)-retigeranin B catalyzed by sesterterpene synthases from Arabidopsis thaliana. Org Lett 19(7):1816–1819.  https://doi.org/10.1021/acs.orglett.7b00586 Google Scholar
  80. Stokvis E, Rosing H, Beijnen JH (2005) Stable isotopically labeled internal standards in quantitative bioanalysis using liquid chromatography/mass spectrometry: necessity or not? Rapid Commun Mass Spectrom 19(3):401–407.  https://doi.org/10.1002/rcm.1790 Google Scholar
  81. Subramanian T, Subramanian KL, Sunkara M, Onono FO, Morris AJ, Spielmann HP (2013) Syntheses of deuterium labeled prenyldiphosphate and prenylcysteine analogues for in vivo mass spectrometric quantification. J Labelled Compd Rad 56(8):370–375.  https://doi.org/10.1002/Jlcr.3049 Google Scholar
  82. Teufel R, Kaysser L, Villaume MT, Diethelm S, Carbullido MK, Baran PS, Moore BS (2014) One-Pot enzymatic synthesis of merochlorin A and B. Angew Chem Int Ed 53(41):11019–11022.  https://doi.org/10.1002/anie.201405694 Google Scholar
  83. Tholl D, Lee S (2011) Terpene specialized metabolism in Arabidopsis thaliana. The Arabidopsis Book. Am Soc Plant Biol 9:e0143.  https://doi.org/10.1199/tab.0143 Google Scholar
  84. Tholl D, Croteau R, Gershenzon J (2001) Partial purification and characterization of the short-chain prenyltransferases, geranyl diphosphate synthase and farnesyl diphosphate synthase, from Abies grandis (grand fir). Arch Biochem Biophys 386(2):233–242.  https://doi.org/10.1006/abbi.2000.2212 Google Scholar
  85. Tholl D, Kish CM, Orlova I, Sherman D, Gershenzon J, Pichersky E, Dudareva N (2004) Formation of monoterpenes in Antirrhinum majus and Clarkia breweri flowers involves heterodimeric geranyl diphosphate synthases. Plant Cell 16(4):977–992.  https://doi.org/10.1105/tpc.020156 Google Scholar
  86. Thulasiram HV, Erickson HK, Poulter CD (2008) A common mechanism for branching, cyclopropanation, and cyclobutanation reactions in the isoprenoid biosynthetic pathway. J Am Chem Soc 130(6):1966–1971.  https://doi.org/10.1021/ja0771282 Google Scholar
  87. Towler M, Weathers P (2007) Evidence of artemisinin production from IPP stemming from both the mevalonate and the nonmevalonate pathways. Plant Cell Rep 26(12):2129–2136.  https://doi.org/10.1007/s00299-007-0420-x Google Scholar
  88. Vandermoten S, Charloteaux B, Santini S, Sen SE, Beliveau C, Vandenbol M, Francis F, Brasseur R, Cusson M (2008) Haubruge E (2008) Characterization of a novel aphid prenyltransferase displaying dual geranyl/farnesyl diphosphate synthase activity (vol 582, pg 1928. FEBS Lett 582(16):2471–2472.  https://doi.org/10.1016/j.febslet.2008.06.002 Google Scholar
  89. Vandermoten S, Haubruge E, Cusson M (2009a) New insights into short-chain prenyltransferases: structural features, evolutionary history and potential for selective inhibition. Cell Mol Life Sci 66(23):3685–3695.  https://doi.org/10.1007/s00018-009-0100-9 Google Scholar
  90. Vandermoten S, Santini S, Haubruge E, Heuze F, Francis F, Brasseur R, Cusson M, Charloteaux B (2009b) Structural features conferring dual Geranyl/Farnesyl diphosphate synthase activity to an aphid prenyltransferase. Insect Biochem Mol Biol 39(10):707–716.  https://doi.org/10.1016/j.ibmb.2009.08.007 Google Scholar
  91. Vickers CE, Bongers M, Liu Q, Delatte T, Bouwmeester H (2014) Metabolic engineering of volatile isoprenoids in plants and microbes. Plant Cell Environ 37(8):1753–1775.  https://doi.org/10.1111/pce.12316 Google Scholar
  92. Wallrapp FH, Pan JJ, Ramamoorthy G, Almonacid DE, Hillerich BS, Seidel R, Patskovsky Y, Babbitt PC, Almo SC, Jacobson MP, Poulter CD (2013) Prediction of function for the polyprenyl transferase subgroup in the isoprenoid synthase superfamily. Proc Nat Acad Sci US Am 110(13):E1196–E1202.  https://doi.org/10.1073/pnas.1300632110 Google Scholar
  93. Wang GD, Dixon RA (2009) Heterodimeric geranyl(geranyl)diphosphate synthase from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis. Proc Nat Acad Sci US Am 106(24):9914–9919.  https://doi.org/10.1073/pnas.0904069106 Google Scholar
  94. Wang KC, Ohnuma S (2000) Isoprenyl diphosphate synthases. Biochim Et Biophys Acta-Mol Cell Biol Lipids 1529(1–3):33–48.  https://doi.org/10.1016/s1388-1981(00)00136-0 Google Scholar
  95. Wang C, Chen Q, Fan D, Li J, Wang G, Zhang P (2016) Structural analyses of short-Chain prenyltransferases identify an evolutionarily conserved GFPPS clade in brassicaceae plants. Mol Plant 9(2):195–204.  https://doi.org/10.1016/j.molp.2015.10.010 Google Scholar
  96. Wu SQ, Schalk M, Clark A, Miles RB, Coates R, Chappell J (2006) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat Biotechnol 24(11):1441–1447.  https://doi.org/10.1038/nbt1251 Google Scholar
  97. Yang T, Gao L, Hu H, Stoopen G, Wang C, Jongsma MA (2014) Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemol synthase activity. J Biol Chem 289(52):36325–36335.  https://doi.org/10.1074/jbc.M114.623348 Google Scholar
  98. Zhang DL, Poulter CD (1993) Analysis and purification of phosphorylated isoprenoids by reversed-phase HPLC. Anal Biochem 213(2):356–361.  https://doi.org/10.1006/abio.1993.1432 Google Scholar
  99. Zhou C, Li Z, Wiberley-Bradford AE, Weise SE, Sharkey TD (2013) Isopentenyl diphosphate and dimethylallyl diphosphate/isopentenyl diphosphate ratio measured with recombinant isopentenyl diphosphate isomerase and isoprene synthase. Anal Biochem 440(2):130–136.  https://doi.org/10.1016/j.ab.2013.05.028 Google Scholar
  100. Zhou F, Wang CY, Gutensohn M, Jiang L, Zhang P, Zhang D, Dudareva N, Lu S (2017) A recruiting protein of geranylgeranyl diphosphate synthase controls metabolic flux toward chlorophyll biosynthesis in rice. Proc Natl Acad Sci USA 114(26):6866–6871.  https://doi.org/10.1073/pnas.1705689114 Google Scholar
  101. Zi J, Matsuba Y, Hong YJ, Jackson AJ, Tantillo DJ, Pichersky E, Peters RJ (2014) Biosynthesis of lycosantalonol, a cis-prenyl derived diterpenoid. J Am Chem Soc 136(49):16951–16953.  https://doi.org/10.1021/ja508477e Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Roy J. Carver Department of Biochemistry, Biophysics and Molecular BiologyIowa State UniversityAmesUSA
  2. 2.Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany

Personalised recommendations