Advertisement

Planta

, Volume 249, Issue 1, pp 155–180 | Cite as

Eukaryotic microalgae as hosts for light-driven heterologous isoprenoid production

  • Kyle J. LauersenEmail author
Review
Part of the following topical collections:
  1. Terpenes and Isoprenoids

Abstract

Main conclusions

Eukaryotic microalgae hold incredible metabolic potential for the sustainable production of heterologous isoprenoid products. Recent advances in algal engineering have enabled the demonstration of prominent examples of heterologous isoprenoid production.

Isoprenoids, also known as terpenes or terpenoids, are the largest class of natural chemicals, with a vast diversity of structures and biological roles. Some have high-value in human-use applications, although may be found in their native contexts in low abundance or be difficult to extract and purify. Heterologous production of isoprenoid compounds in heterotrophic microbial hosts such as bacteria or yeasts has been an active area of research for some time and is now a mature technology. Eukaryotic microalgae represent sustainable alternatives to these hosts for biotechnological production processes as their cultivation can be driven by light and freely available CO2 as a carbon source. Their photosynthetic lifestyles require metabolic architectures structured towards the generation of associated isoprenoids (carotenoids, phytol) which participate in photon capture, energy dissipation, and electron transfer. Eukaryotic microalgae should, therefore, contain inherently high capacities for the generation of heterologous isoprenoid products. Although engineering strategies in eukaryotic microalgae have lagged behind the more genetically tractable bacteria and yeasts, recent advances in algal engineering concepts have demonstrated prominent examples of light-driven heterologous isoprenoid production from these photosynthetic hosts. This work seeks to provide practical insights into the choice of eukaryotic microalgae as biotechnological chassis. Recent reports of advances in algal engineering for heterologous isoprenoid production are highlighted as encouraging examples that promote their expanded use as sustainable green-cell factories. Current state of the art, limitations, and future challenges are also discussed.

Graphical abstract

Keywords

Microalgae Chlamydomonas reinhardtii Phaeodactylum tricornutum Terpenoids Isoprenoids Cytochrome P450s 

Abbreviations

IPP

Isopentenyl pyrophosphate

DMAPP

Dimethylallyl pyrophosphate

GPP(s)

Geranyl pyrophosphate (synthase)

FPP(s)

Farnesyl pyrophosphate (synthase)

GGPP(s)

Geranylgeranyl pyrophosphate (synthase)

YFP

Yellow fluorescent protein

CFP

Cyan fluorescent protein

RFP

Red fluorescent protein

TPS

Terpene synthase

sTPS

Sesquiterpenoid synthase

diTPS

Diterpene synthase

tTPS

Triterpenoid synthase

CYP

Cytochrome P450 monooxygenase

Notes

Acknowledgements

This work has been supported by the technology platform and infrastructure at the Center for Biotechnology (CeBiTec) of Bielefeld University. Sincere thanks to Dr. Thomas Baier for critical reading of this manuscript and those mentioned in the text who provided pictures.

Compliance with ethical standards

Conflict of interest

The author declares no conflict of interest.

References

  1. Ajjawi I, Verruto J, Aqui M et al (2017) Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nat Biotechnol 35:647–652.  https://doi.org/10.1038/nbt.3865 CrossRefPubMedGoogle Scholar
  2. Albertsen L, Chen Y, Bach LS et al (2011) Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes. Appl Environ Microbiol 77:1033–1040.  https://doi.org/10.1128/AEM.01361-10 CrossRefPubMedGoogle Scholar
  3. Andersen-Ranberg J, Kongstad KT, Nielsen MT et al (2016) Expanding the landscape of diterpene structural diversity through stereochemically controlled combinatorial biosynthesis. Angew Chemie 128:2182–2186.  https://doi.org/10.1002/ange.201510650 CrossRefGoogle Scholar
  4. Archibald JM (2012) the evolution of algae by secondary and tertiary endosymbiosis. In: Piganeau G (ed) Advances in botanical research. Elsevier, New York, pp 87–118Google Scholar
  5. Baier T, Wichmann J, Kruse O, Lauersen KJ (2018) Intron-containing algal transgenes mediate efficient recombinant gene expression in the green microalga Chlamydomonas reinhardtii. Nucleic Acids Res 46:6909–6919.  https://doi.org/10.1093/nar/gky532 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barahimipour R, Neupert J, Bock R (2016) Efficient expression of nuclear transgenes in the green alga Chlamydomonas: synthesis of an HIV antigen and development of a new selectable marker. Plant Mol Biol.  https://doi.org/10.1007/s11103-015-0425-8 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Benemann J (2013) Microalgae for biofuels and animal feeds. Energies 6:5869–5886.  https://doi.org/10.3390/en6115869 CrossRefGoogle Scholar
  8. Black JB, Perez-Pinera P, Gersbach CA (2017) Mammalian synthetic biology: engineering biological systems. Annu Rev Biomed Eng 19:249–277.  https://doi.org/10.1146/annurev-bioeng-071516-044649 CrossRefPubMedGoogle Scholar
  9. Bogen C, Al-Dilaimi A, Albersmeier A et al (2013) Reconstruction of the lipid metabolism for the microalga Monoraphidium neglectum from its genome sequence reveals characteristics suitable for biofuel production. BMC Genomics 14:926.  https://doi.org/10.1186/1471-2164-14-926 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bohlmann J, Keeling CI (2008) Terpenoid biomaterials. Plant J 54:656–669.  https://doi.org/10.1111/j.1365-313X.2008.03449.x CrossRefPubMedGoogle Scholar
  11. Bohlmann J, Crock J, Jetter R, Croteau R (1998) Terpenoid-based defenses in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-alpha-bisabolene synthase from grand fir (Abies grandis). Proc Natl Acad Sci USA 95:6756–6761.  https://doi.org/10.1073/pnas.95.12.6756 CrossRefPubMedGoogle Scholar
  12. Bowler C, Allen AE, Badger JH et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244.  https://doi.org/10.1038/nature07410 CrossRefPubMedGoogle Scholar
  13. Bruggeman AJ, Kuehler D, Weeks DP (2014) Evaluation of three herbicide resistance genes for use in genetic transformations and for potential crop protection in algae production. Plant Biotechnol J 12:894–902.  https://doi.org/10.1111/pbi.12192 CrossRefGoogle Scholar
  14. Buckingham J, Macdonald FM, Bradley HM et al (1994) Dictionary of natural products, 1st edn. Chapman and Hall, LondonGoogle Scholar
  15. Cabanelas ITD, Marques SSI, de Souza CO et al (2015) Botryococcus, what to do with it? Effect of nutrient concentration on biorefinery potential. Algal Res 11:43–49.  https://doi.org/10.1016/j.algal.2015.05.009 CrossRefGoogle Scholar
  16. Carrera Pacheco SE, Hankamer B, Oey M (2018) Optimising light conditions increases recombinant protein production in Chlamydomonas reinhardtii chloroplasts. Algal Res 32:329–340.  https://doi.org/10.1016/j.algal.2018.04.011 CrossRefGoogle Scholar
  17. Chandran SS, Kealey JT, Reeves CD (2011) Microbial production of isoprenoids. Process Biochem 46:1703–1710.  https://doi.org/10.1016/j.procbio.2011.05.012 CrossRefGoogle Scholar
  18. Chaves JE, Melis A (2018) Engineering isoprene synthesis in cyanobacteria. FEBS Lett.  https://doi.org/10.1002/1873-3468.13052 CrossRefPubMedGoogle Scholar
  19. Corteggiani Carpinelli E, Telatin A, Vitulo N et al (2014) Chromosome scale genome assembly and transcriptome profiling of nannochloropsis gaditana in nitrogen depletion. Mol Plant 7:323–335.  https://doi.org/10.1093/mp/sst120 CrossRefPubMedGoogle Scholar
  20. Crozet P, Navarro FJ, Willmund F et al (2018) Birth of a photosynthetic chassis: a MoClo toolkit enabling synthetic biology in the microalga Chlamydomonas reinhardtii. ACS Synth Biol.  https://doi.org/10.1021/acssynbio.8b00251 CrossRefPubMedGoogle Scholar
  21. D’Adamo S, Schiano di Visconte G, Lowe G et al (2018) Engineering The Unicellular Alga Phaeodactylum tricornutum For high-value plant triterpenoid production. Plant Biotechnol J.  https://doi.org/10.1111/pbi.12948 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Danielewicz M, Anderson LA, Franz AK (2011) Triacylglycerol profiling of marine microalgae by mass spectrometry. J Lipid Res 52:2101–2108.  https://doi.org/10.1194/jlr.D018408 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Davies FK, Jinkerson RE, Posewitz MC (2015) Toward a photosynthetic microbial platform for terpenoid engineering. Photosynth Res 123:265–284.  https://doi.org/10.1007/s11120-014-9979-6 CrossRefPubMedGoogle Scholar
  24. Deguerry F, Pastore L, Wu S et al (2006) The diverse sesquiterpene profile of patchouli, Pogostemon cablin, is correlated with a limited number of sesquiterpene synthases. Arch Biochem Biophys 454:123–136.  https://doi.org/10.1016/j.abb.2006.08.006 CrossRefPubMedGoogle Scholar
  25. Dong B, Hu HH, Li ZF et al (2017) A novel bicistronic expression system composed of the intraflagellar transport protein gene ift25 and FMDV 2A sequence directs robust nuclear gene expression in Chlamydomonas reinhardtii. Appl Microbiol Biotechnol 101:4227–4245.  https://doi.org/10.1007/s00253-017-8177-9 CrossRefPubMedGoogle Scholar
  26. Duncker BP, Davies PL, Walker VK (1997) Introns boost transgene expression in Drosophila melanogaster. Mol Gen Genet 254:291–296.  https://doi.org/10.1007/s004380050418 CrossRefPubMedGoogle Scholar
  27. Dyo YM, Purton S (2018) The algal chloroplast as a synthetic biology platform for production of therapeutic proteins. Microbiology.  https://doi.org/10.1099/mic.0.000599 CrossRefPubMedGoogle Scholar
  28. Eichler-Stahlberg A, Weisheit W, Ruecker O, Heitzer M (2009) Strategies to facilitate transgene expression in Chlamydomonas reinhardtii. Planta 229:873–883.  https://doi.org/10.1007/s00425-008-0879-x CrossRefPubMedGoogle Scholar
  29. Eilers U, Bikoulis A, Breitenbach J et al (2016) Limitations in the biosynthesis of fucoxanthin as targets for genetic engineering in Phaeodactylum tricornutum. J Appl Phycol 28:123–129.  https://doi.org/10.1007/s10811-015-0583-8 CrossRefGoogle Scholar
  30. Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One.  https://doi.org/10.1371/journal.pone.0003647 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Eroglu E, Melis A (2010) Extracellular terpenoid hydrocarbon extraction and quantitation from the green microalgae Botryococcus braunii var. Showa. Bioresour Technol 101:2359–2366.  https://doi.org/10.1016/j.biortech.2009.11.043 CrossRefPubMedGoogle Scholar
  32. Fabregas J, Abalde J, Herrero C et al (1984) Growth of the marine microalga Tetraselmis suecica in batch cultures with different salinities and nutrient concentrations. Aquaculture 42:207–215.  https://doi.org/10.1016/0044-8486(84)90101-7 CrossRefGoogle Scholar
  33. Fairley P (2011) Introduction: next generation biofuels. Nature 474:S2–S5.  https://doi.org/10.1038/474S02a CrossRefPubMedGoogle Scholar
  34. Fernández E, Schnell R, Ranum LP et al (1989) Isolation and characterization of the nitrate reductase structural gene of Chlamydomonasreinhardtii. Proc Natl Acad Sci 86:6449–6453CrossRefPubMedGoogle Scholar
  35. Fresewinkel M, Rosello R, Wilhelm C et al (2014) Integration in microalgal bioprocess development: design of efficient, sustainable, and economic processes. Eng Life Sci.  https://doi.org/10.1002/elsc.201300153 CrossRefGoogle Scholar
  36. Fuhrmann M, Oertel W, Hegemann P (1999) A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J 19:353–361.  https://doi.org/10.1046/j.1365-313X.1999.00526.x CrossRefPubMedGoogle Scholar
  37. Gallegos JE, Rose AB (2015) The enduring mystery of intron-mediated enhancement. Plant Sci 237:8–15.  https://doi.org/10.1016/j.plantsci.2015.04.017 CrossRefPubMedGoogle Scholar
  38. Goldschmidt-Clermont M (1991) Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker of site-directed transformation of Chlamydomonas. Nucleic Acids Res 19:4083–4089CrossRefPubMedPubMedCentralGoogle Scholar
  39. Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci 54:1665–1669.  https://doi.org/10.1073/pnas.54.6.1665 CrossRefPubMedGoogle Scholar
  40. Gruchattka E, Kayser O (2015) In vivo validation of in silico predicted metabolic engineering strategies in yeast: disruption of α-ketoglutarate dehydrogenase and expression of ATP-citrate lyase for terpenoid production. PLoS One 10:e0144981.  https://doi.org/10.1371/journal.pone.0144981 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Gruchattka E, Hädicke O, Klamt S et al (2013) In silico profiling of Escherichia coli and Saccharomyces cerevisiae as terpenoid factories. Microb Cell Fact 12:84.  https://doi.org/10.1186/1475-2859-12-84 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Gumpel NJ, Rochaix JD, Purton S (1994) Studies on homologous recombination in the green alga Chlamydomonas reinhardtii. Curr Genet 26:438–442CrossRefPubMedGoogle Scholar
  43. Hallmann A (2007) Algal transgenics and biotechnology. Transgenic Plant J 1:81–98Google Scholar
  44. Hallmann A (2016) Algae biotechnology—green cell-factories on the rise. Curr Biotechnol 4:389–415.  https://doi.org/10.2174/2211550105666151107001338 CrossRefGoogle Scholar
  45. Hallmann A, Rappel A (1999) Genetic engineering of the multicellular green alga Volvox: a modified and multiplied bacterial antibiotic resistance gene as a dominant selectable marker. Plant J 17:99–109.  https://doi.org/10.1046/j.1365-313X.1999.00342.x CrossRefPubMedGoogle Scholar
  46. Henke N, Wichmann J, Baier T et al (2018) Patchoulol production with metabolically engineered Corynebacterium glutamicum. Genes (Basel) 9:219.  https://doi.org/10.3390/genes9040219 CrossRefGoogle Scholar
  47. Hu Q, Sommerfeld M, Jarvis E et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639.  https://doi.org/10.1111/j.1365-313X.2008.03492.x CrossRefPubMedGoogle Scholar
  48. Ignea C, Trikka FA, Nikolaidis AK et al (2015) Efficient diterpene production in yeast by engineering Erg20p into a geranylgeranyl diphosphate synthase. Metab Eng 27:65–75.  https://doi.org/10.1016/j.ymben.2014.10.008 CrossRefPubMedGoogle Scholar
  49. Jaeger D, Hübner W, Huser T et al (2017) Nuclear transformation and functional gene expression in the oleaginous microalga Monoraphidium neglectum. J Biotechnol 249:10–15.  https://doi.org/10.1016/j.jbiotec.2017.03.011 CrossRefPubMedGoogle Scholar
  50. Jakob G, Wolf J, Bui TVL et al (2013) Surveying a diverse pool of microalgae as a bioresource for future biotechnological applications. J Pet Environ Biotechnol 4:1–8.  https://doi.org/10.4172/2157-7463.1000153 CrossRefGoogle Scholar
  51. Jiang L, Luo S, Fan X et al (2011) Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl Energy 88:3336–3341.  https://doi.org/10.1016/j.apenergy.2011.03.043 CrossRefGoogle Scholar
  52. Kajikawa M, Kinohira S, Ando A et al (2015) Accumulation of squalene in a microalga Chlamydomonas reinhardtii by genetic modification of squalene synthase and squalene epoxidase genes. PLoS One 10:e0120446.  https://doi.org/10.1371/journal.pone.0120446 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Karas BJ, Diner RE, Lefebvre SC et al (2015) Designer diatom episomes delivered by bacterial conjugation. Nat Commun 6:6925.  https://doi.org/10.1038/ncomms7925 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 365:729–748.  https://doi.org/10.1098/rstb.2009.0103 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Kilian O, Benemann CSE, Niyogi KK, Vick B (2011) High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci USA 108:21265–21269.  https://doi.org/10.1073/pnas.1105861108 CrossRefPubMedGoogle Scholar
  56. Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87:1228–1232CrossRefPubMedGoogle Scholar
  57. Kindle KL, Schnell RA, Fernández E, Lefebvre PA (1989) Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J Cell Biol 109:2589–2601.  https://doi.org/10.1083/jcb.109.6.2589 CrossRefPubMedGoogle Scholar
  58. Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355.  https://doi.org/10.1146/annurev.arplant.043008.091955 CrossRefPubMedGoogle Scholar
  59. Kruse O, Rupprecht J, Mussgnug JH et al (2005) Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem Photobiol Sci 4:957–970.  https://doi.org/10.1039/b506923h CrossRefPubMedGoogle Scholar
  60. Kumar A, Falcao VR, Sayre RT (2013) Evaluating nuclear transgene expression systems in Chlamydomonas reinhardtii. Algal Res 2:321–332.  https://doi.org/10.1016/j.algal.2013.09.002 CrossRefGoogle Scholar
  61. Lange BM, Rujan T, Martin W, Croteau R (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci 97:13172–13177.  https://doi.org/10.1073/pnas.240454797 CrossRefPubMedGoogle Scholar
  62. Larkum AWD, Ross IL, Kruse O, Hankamer B (2012) Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol 30:198–205.  https://doi.org/10.1016/j.tibtech.2011.11.003 CrossRefPubMedGoogle Scholar
  63. Lauersen KJ, Berger H, Mussgnug JH, Kruse O (2013a) Efficient recombinant protein production and secretion from nuclear transgenes in Chlamydomonas reinhardtii. J Biotechnol 167:101–110.  https://doi.org/10.1016/j.jbiotec.2012.10.010 CrossRefPubMedGoogle Scholar
  64. Lauersen KJ, Vanderveer TL, Berger H et al (2013b) Ice recrystallization inhibition mediated by a nuclear-expressed and -secreted recombinant ice-binding protein in the microalga Chlamydomonas reinhardtii. Appl Microbiol Biotechnol 97:9763–9772.  https://doi.org/10.1007/s00253-013-5226-x CrossRefPubMedGoogle Scholar
  65. Lauersen KJ, Huber I, Wichmann J et al (2015a) Investigating the dynamics of recombinant protein secretion from a microalgal host. J Biotechnol 215:62–71.  https://doi.org/10.1016/j.jbiotec.2015.05.001 CrossRefPubMedGoogle Scholar
  66. Lauersen KJ, Kruse O, Mussgnug JH (2015b) Targeted expression of nuclear transgenes in Chlamydomonas reinhardtii with a versatile, modular vector toolkit. Appl Microbiol Biotechnol 99:3491–3503.  https://doi.org/10.1007/s00253-014-6354-7 CrossRefPubMedGoogle Scholar
  67. Lauersen KJ, Baier T, Wichmann J et al (2016) Efficient phototrophic production of a high-value sesquiterpenoid from the eukaryotic microalga Chlamydomonas reinhardtii. Metab Eng 38:331–343.  https://doi.org/10.1016/j.ymben.2016.07.013 CrossRefPubMedGoogle Scholar
  68. Lauersen KJ, Wichmann J, Baier T et al (2018) Phototrophic production of heterologous diterpenoids and a hydroxy-functionalized derivative from Chlamydomonas reinhardtii. Metab Eng 49:116–127.  https://doi.org/10.1016/j.ymben.2018.07.005 CrossRefPubMedGoogle Scholar
  69. Leavell MD, McPhee DJ, Paddon CJ (2016) Developing fermentative terpenoid production for commercial usage. Curr Opin Biotechnol 37:114–119.  https://doi.org/10.1016/j.copbio.2015.10.007 CrossRefPubMedGoogle Scholar
  70. Lehr F, Posten C (2009) Closed photo-bioreactors as tools for biofuel production. Curr Opin Biotechnol 20:280–285.  https://doi.org/10.1016/j.copbio.2009.04.004 CrossRefPubMedGoogle Scholar
  71. Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65.  https://doi.org/10.1146/annurev.arplant.50.1.47 CrossRefPubMedGoogle Scholar
  72. Lichtenthaler HK, Schwender J, Disch A, Rohmer M (1997) Biosynthesis of isoprenoids in higher plants chloroplasts proceeds via a mevalonate pathway. FEBS Lett 400:271–274CrossRefPubMedGoogle Scholar
  73. Lin X, Hezari M, Koepp AE et al (1996) Mechanism of taxadiene synthase, a diterpene cyclase that catalyzes the first step of taxol biosynthesis in Pacific yew. Biochemistry 35:2968–2977.  https://doi.org/10.1021/bi9526239 CrossRefPubMedGoogle Scholar
  74. Lohr M, Schwender J, Polle JEW (2012) Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci 185–186:9–22CrossRefPubMedGoogle Scholar
  75. Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167CrossRefPubMedGoogle Scholar
  76. Lumbreras V, Stevens RD, Purton S et al (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J 14:441–447.  https://doi.org/10.1046/j.1365-313X.1998.00145.x CrossRefGoogle Scholar
  77. Luo D, Callari R, Hamberger B et al (2016) Oxidation and cyclization of casbene in the biosynthesis of Euphorbia factors from mature seeds of Euphorbia lathyris L. Proc Natl Acad Sci 113:E5082–E5089.  https://doi.org/10.1073/pnas.1607504113 CrossRefPubMedGoogle Scholar
  78. McFadden GI (2001) Primary and secondary endosymbiosis and the origin of plastids. J Phycol 37:951–959.  https://doi.org/10.1046/j.1529-8817.2001.01126.x CrossRefGoogle Scholar
  79. McFadden GI, Van Dooren GG (2004) Evolution: red algal genome affirms a common origin of all plastids. Curr Biol 14:514–516.  https://doi.org/10.1016/j.cub.2004.06.041 CrossRefGoogle Scholar
  80. Melis A (2012) Photosynthesis-to-fuels: from sunlight to hydrogen, isoprene, and botryococcene production. Energy Environ Sci 5:5531–5539.  https://doi.org/10.1039/C1EE02514G CrossRefGoogle Scholar
  81. Melis A (2013) Carbon partitioning in photosynthesis. Curr Opin Chem Biol 17:453–456.  https://doi.org/10.1016/j.cbpa.2013.03.010 CrossRefPubMedGoogle Scholar
  82. Merchant SS, Prochnik SE, Vallon O et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250.  https://doi.org/10.1126/science.1143609 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Morweiser M, Kruse O, Hankamer B, Posten C (2010) Developments and perspectives of photobioreactors for biofuel production. Appl Microbiol Biotechnol 87:1291–1301.  https://doi.org/10.1007/s00253-010-2697-x CrossRefPubMedGoogle Scholar
  84. Mussgnug JH (2015) Genetic tools and techniques for Chlamydomonas reinhardtii. Appl Microbiol Biotechnol.  https://doi.org/10.1007/s00253-015-6698-7 CrossRefPubMedGoogle Scholar
  85. Neupert J, Karcher D, Bock R (2009) Generation of Chlamydomonas strains that efficiently express nuclear transgenes. Plant J 57:1140–1150.  https://doi.org/10.1111/j.1365-313X.2008.03746.x CrossRefPubMedGoogle Scholar
  86. Palmiter RD, Sandgren EP, Avarbock MR et al (1991) Heterologous introns can enhance expression of transgenes in mice. Proc Natl Acad Sci 88:478–482.  https://doi.org/10.1073/pnas.88.2.478 CrossRefPubMedGoogle Scholar
  87. Pateraki I, Andersen-Ranberg J, Hamberger B et al (2014) Manoyl oxide (13R), the biosynthetic precursor of forskolin, is synthesized in specialized root cork cells in Coleus forskohlii. Plant Physiol 164:1222–1236.  https://doi.org/10.1104/pp.113.228429 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Pateraki I, Heskes AM, Hamberger B (2015) Cytochromes P450 for Terpene Functionalisation and Metabolic Engineering. In: Advances in biochemical engineering/biotechnology. pp 107–139Google Scholar
  89. Pateraki I, Andersen-Ranberg J, Jensen NB et al (2017) Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii. Elife 6:1–28.  https://doi.org/10.7554/eLife.23001 CrossRefGoogle Scholar
  90. Peralta-Yahya PP, Ouellet M, Chan R et al (2011) Identification and microbial production of a terpene-based advanced biofuel. Nat Commun 2:483.  https://doi.org/10.1038/ncomms1494 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Poliner E, Farré EM, Benning C (2018a) Advanced genetic tools enable synthetic biology in the oleaginous microalgae Nannochloropsis sp. Plant Cell Rep.  https://doi.org/10.1007/s00299-018-2270-0 CrossRefPubMedGoogle Scholar
  92. Poliner E, Pulman JA, Zienkiewicz K et al (2018b) A toolkit for Nannochloropsis oceanica CCMP1779 enables gene stacking and genetic engineering of the eicosapentaenoic acid pathway for enhanced long-chain polyunsaturated fatty acid production. Plant Biotechnol J 16:298–309.  https://doi.org/10.1111/pbi.12772 CrossRefPubMedGoogle Scholar
  93. Poliner E, Takeuchi T, Du ZY et al (2018c) Nontransgenic marker-free gene disruption by an episomal CRISPR system in the Oleaginous Microalga, Nannochloropsis oceanica CCMP1779. ACS Synth Biol 7:962–968.  https://doi.org/10.1021/acssynbio.7b00362 CrossRefPubMedGoogle Scholar
  94. Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9:165–177.  https://doi.org/10.1002/elsc.200900003 CrossRefGoogle Scholar
  95. Potvin G, Zhang Z (2010) Strategies for high-level recombinant protein expression in transgenic microalgae: a review. Biotechnol Adv 28:910–918.  https://doi.org/10.1016/j.biotechadv.2010.08.006 CrossRefPubMedGoogle Scholar
  96. Purton S, Szaub JB, Wannathong T et al (2013) Genetic engineering of algal chloroplasts: progress and prospects. Russ J Plant Physiol 60:491–499.  https://doi.org/10.1134/S1021443713040146 CrossRefGoogle Scholar
  97. Radakovits R, Jinkerson RE, Fuerstenberg SI et al (2012) Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat Commun 3:686.  https://doi.org/10.1038/ncomms1688 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Raja R, Hemaiswarya S, Rengasamy R (2007) Exploitation of Dunaliella for beta-carotene production. Appl Microbiol Biotechnol 74:517–523.  https://doi.org/10.1007/s00253-006-0777-8 CrossRefPubMedGoogle Scholar
  99. Rasala BA, Lee PA, Shen Z et al (2012) Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS One 7:e43349CrossRefPubMedPubMedCentralGoogle Scholar
  100. Rasala BA, Barrera DJ, Ng J et al (2013) Expanding the spectral palette of fluorescent proteins for the green microalga Chlamydomonas reinhardtii. Plant J 74:545–556.  https://doi.org/10.1111/tpj.12165 CrossRefPubMedGoogle Scholar
  101. Reed J, Stephenson MJ, Miettinen K et al (2017) A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules. Metab Eng 42:185–193.  https://doi.org/10.1016/j.ymben.2017.06.012 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Remacle C, Cardol P, Coosemans N et al (2006) High-efficiency biolistic transformation of Chlamydomonas mitochondria can be used to insert mutations in complex I genes. Proc Natl Acad Sci USA 103:4771–4776.  https://doi.org/10.1073/pnas.0509501103 CrossRefPubMedGoogle Scholar
  103. Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–574.  https://doi.org/10.1039/a709175c CrossRefPubMedGoogle Scholar
  104. Rohmer M, Knani M, Simonin P et al (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295(Pt 2):517–524.  https://doi.org/10.1042/bj2950517 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430–436.  https://doi.org/10.1016/j.copbio.2008.07.008 CrossRefPubMedGoogle Scholar
  106. Scaife MA, Smith AG (2016) Towards developing algal synthetic biology. Biochem Soc Trans 44:716–722.  https://doi.org/10.1042/BST20160061 CrossRefPubMedGoogle Scholar
  107. Scala S, Carels N, Falciatore A et al (2002) Genome properties of the diatom Phaeodactylum tricornutum. Plant Physiol 129:993–1002.  https://doi.org/10.1104/pp.010713 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Schenk PM, Thomas-Hall SR, Stephens E et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res 1:20–43.  https://doi.org/10.1007/s12155-008-9008-8 CrossRefGoogle Scholar
  109. Schierenbeck L, Ries D, Rogge K et al (2015) Fast forward genetics to identify mutations causing a high light tolerant phenotype in Chlamydomonas reinhardtii by whole-genome-sequencing. BMC Genomics 16:1–15.  https://doi.org/10.1186/s12864-015-1232-y CrossRefGoogle Scholar
  110. Schnell RA, Lefebvre PA (1993) Isolation of the chlamydomonas regulatory gene NIT2 by transposon tagging. Genetics 134:737–747PubMedPubMedCentralGoogle Scholar
  111. Schroda M, Blöcker D, Beck CF (2000) The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J 21:121–131.  https://doi.org/10.1046/j.1365-313x.2000.00652.x CrossRefPubMedGoogle Scholar
  112. Schwender J, Seemann M, Lichtenthaler HK, Rohmer M (1996) Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem J 316:73–80.  https://doi.org/10.1042/bj3160073 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Scranton MA, Ostrand JT, Georgianna DR et al (2016) Synthetic promoters capable of driving robust nuclear gene expression in the green alga Chlamydomonas reinhardtii. Algal Res 15:135–142.  https://doi.org/10.1016/j.algal.2016.02.011 CrossRefGoogle Scholar
  114. Shao N, Bock R (2008) A codon-optimized luciferase from Gaussia princeps facilitates the in vivo monitoring of gene expression in the model alga Chlamydomonas reinhardtii. Curr Genet 53:381–388.  https://doi.org/10.1007/s00294-008-0189-7 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Siaut M, Heijde M, Mangogna M et al (2007) Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum. Gene 406:23–35.  https://doi.org/10.1016/j.gene.2007.05.022 CrossRefPubMedGoogle Scholar
  116. Siddique HR, Saleem M (2011) Beneficial health effects of lupeol triterpene: a review of preclinical studies. Life Sci 88:302–306.  https://doi.org/10.1016/j.lfs.2010.11.020 CrossRefGoogle Scholar
  117. Singh RN, Sharma S (2012) Development of suitable photobioreactor for algae production—a review. Renew Sustain Energy Rev 16:2347–2353.  https://doi.org/10.1016/j.rser.2012.01.026 CrossRefGoogle Scholar
  118. Specht E, Miyake-Stoner S, Mayfield S (2010) Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 32:1373–1383.  https://doi.org/10.1007/s10529-010-0326-5 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Specht EA, Karunanithi PS, Gimpel JA et al (2016) Host organisms: algae. Industrial biotechnology. Wiley, Weinheim, Germany, pp 605–641CrossRefGoogle Scholar
  120. Streatfield SJ (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5:2–15.  https://doi.org/10.1111/j.1467-7652.2006.00216.x CrossRefPubMedGoogle Scholar
  121. Tikhonov MV, Maksimenko OG, Georgiev PG, Korobko IV (2017) Optimal artificial mini-introns for transgenic expression in the cells of mice and hamsters. Mol Biol 51:592–595.  https://doi.org/10.1134/S0026893317040173 CrossRefGoogle Scholar
  122. Trikka FA, Nikolaidis A, Ignea C et al (2015) Combined metabolome and transcriptome profiling provides new insights into diterpene biosynthesis in S. pomifera glandular trichomes. BMC Genomics 16:1–19.  https://doi.org/10.1186/s12864-015-2147-3 CrossRefGoogle Scholar
  123. Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028.  https://doi.org/10.1016/j.biortech.2007.01.046 CrossRefPubMedGoogle Scholar
  124. Verruto J, Francis K, Wang Y et al (2018) Unrestrained markerless trait stacking in Nannochloropsis gaditana through combined genome editing and marker recycling technologies. Proc Natl Acad Sci 115:E7015–E7022.  https://doi.org/10.1073/pnas.1718193115 CrossRefPubMedGoogle Scholar
  125. Vickers CE, Williams TC, Peng B, Cherry J (2017) Recent advances in synthetic biology for engineering isoprenoid production in yeast. Curr Opin Chem Biol 40:47–56.  https://doi.org/10.1016/j.cbpa.2017.05.017 CrossRefPubMedGoogle Scholar
  126. Vieler A, Wu G, Tsai C-H et al (2012) Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 8:e1003064.  https://doi.org/10.1371/journal.pgen.1003064 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Weber E, Engler C, Gruetzner R et al (2011) A modular cloning system for standardized assembly of multigene constructs. PLoS One.  https://doi.org/10.1371/journal.pone.0016765 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Weiner I, Atar S, Schweitzer S et al (2018) Enhancing heterologous expression in Chlamydomonas reinhardtii by transcript sequence optimization. Plant J 94:22–31.  https://doi.org/10.1111/tpj.13836 CrossRefPubMedGoogle Scholar
  129. Wichmann J, Baier T, Wentnagel E et al (2018) Tailored carbon partitioning for phototrophic production of (E)-α-bisabolene from the green microalga Chlamydomonas reinhardtii. Metab Eng 45:211–222.  https://doi.org/10.1016/j.ymben.2017.12.010 CrossRefPubMedGoogle Scholar
  130. Wijffels RH, Kruse O, Hellingwerf KJ (2013) Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol 24:405–413.  https://doi.org/10.1016/j.copbio.2013.04.004 CrossRefPubMedGoogle Scholar
  131. Wolf J, Stephens E, Steinbusch S et al (2016) Multifactorial comparison of photobioreactor geometries in parallel microalgae cultivations. Algal Res 15:187–201.  https://doi.org/10.1016/j.algal.2016.02.018 CrossRefGoogle Scholar
  132. Yang B, Liu J, Jiang Y, Chen F (2016) Chlorella species as hosts for genetic engineering and expression of heterologous proteins: progress, challenge and perspective. Biotechnol J 11:1244–1261.  https://doi.org/10.1002/biot.201500617 CrossRefPubMedGoogle Scholar
  133. Zedler JAZ, Gangl D, Hamberger B et al (2014) Stable expression of a bifunctional diterpene synthase in the chloroplast of Chlamydomonas reinhardtii. J Appl Phycol.  https://doi.org/10.1007/s10811-014-0504-2 CrossRefGoogle Scholar
  134. Zerbe P, Hamberger B, Yuen MMS et al (2013) Gene discovery of modular diterpene metabolism in nonmodel systems. Plant Physiol 162:1073–1091.  https://doi.org/10.1104/pp.113.218347 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Biology, Center for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany

Personalised recommendations