Advertisement

Planta

pp 1–20 | Cite as

Genetic, evolutionary and phylogenetic aspects of the plastome of annatto (Bixa orellana L.), the Amazonian commercial species of natural dyes

  • Túlio Gomes Pacheco
  • Amanda de Santana Lopes
  • Gélia Dinah Monteiro Viana
  • Odyone Nascimento da Silva
  • Gleyson Morais da Silva
  • Leila do Nascimento Vieira
  • Miguel Pedro Guerra
  • Rubens Onofre Nodari
  • Emanuel Maltempi de Souza
  • Fábio de Oliveira Pedrosa
  • Wagner Campos Otoni
  • Marcelo Rogalski
Original Article
  • 119 Downloads

Abstract

Main conclusion

The plastome of B. orellana reveals specific evolutionary features, unique RNA editing sites, molecular markers and the position of Bixaceae within Malvales.

Annatto (Bixa orellana L.) is a native species of tropical Americas with center of origin in Brazilian Amazonia. Its seeds accumulate the apocarotenoids, bixin and norbixin, which are only found in high content in this species. The seeds of B. orellana are commercially valued by the food industry because its dyes replace synthetic ones from the market due to potential carcinogenic risks. The increasing consumption of B. orellana seeds for dye extraction makes necessary the increase of productivity, which is possible accessing the genetic basis and searching for elite genotypes. The identification and characterization of molecular markers are essential to analyse the genetic diversity of natural populations and to establish suitable strategies for conservation, domestication, germplasm characterization and genetic breeding. Therefore, we sequenced and characterized in detail the plastome of B. orellana. The plastome of B. orellana is a circular DNA molecule of 159,708 bp with a typical quadripartite structure and 112 unique genes. Additionally, a total of 312 SSR loci were identified in the plastome of B. orellana. Moreover, we predicted in 23 genes a total of 57 RNA-editing sites of which 11 are unique for B. orellana. Furthermore, our plastid phylogenomic analyses, using the plastome sequences available in the plastid database belonging to species of order Malvales, indicate a closed relationship between Bixaceae and Malvaceae, which formed a sister group to Thymelaeaceae. Finally, our study provided useful data to be employed in several genetic and biotechnological approaches in B. orellana and related species of the family Bixaceae.

Keywords

Bixaceae Cytoplasmic inheritance Plastid SSRs Polymorphism hotspots Gene divergence Plastid RNA editing 

Notes

Acknowledgements

This research was support by the National Council for Scientific and Technological Development, Brazil (CNPq, Grant 459698/2014-1). We are grateful to INCT-FBN and for the scholarships granted by the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES) to GDMV, ONS, GMS and LNV, and those granted by the CNPq to ASL, TGP, MPG, RON, EMS, FOP and WCO.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

425_2018_3023_MOESM1_ESM.docx (553 kb)
Supplementary material 1 (DOCX 553 kb)

References

  1. Alkatib S, Scharff LB, Rogalski M, Fleischmann TT, Matthes A, Seeger S et al (2012) The contributions of wobbling and superwobbling to the reading of the genetic code. PLoS Genet 8:e1003076.  https://doi.org/10.1371/journal.pgen.1003076 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alverson WS, Whitlock BA, Nyfeler R, Bayer C, Baum DA (1999) Phylogeny of the core Malvales: evidence from ndhF sequence data. Am J Bot 86:1474–1486.  https://doi.org/10.2307/2656928 CrossRefGoogle Scholar
  3. Annadurai RS, Jayakumar V, Mugasimangalam RC, Katta MAVSK, Anand S, Gopinathan S, Sarma SP, Fernandes SJ, Mullapudi N, Murugesan S, Rao SN (2012) Next generation sequencing and de novo transcriptome analysis of Costus pictus D. Don, a non-model plant with potent anti-diabetic properties. BMC Genom 13:1–15.  https://doi.org/10.1186/1471-2164-13-663 CrossRefGoogle Scholar
  4. Asif MH, Mantri SS, Sharma A, Srivastava A, Trivedi I, Gupta P, Mohanty CS, Sawant SV, Tuli R (2010) Complete sequence and organisation of the Jatropha curcas (Euphorbiaceae) chloroplast genome. Tree Genet Genomes 6:941–952.  https://doi.org/10.1007/s11295-010-0303-0 CrossRefGoogle Scholar
  5. Barrett CF, Baker WJ, Comer JR, Conran JG, Lahmeyer SC, Leebens-Mack JH, Li J, Lim GS, Mayfield-Jones DR, Perez L et al (2016) Plastid genomes reveal support for deep phylogenetic relationships and extensive rate variation among palms and other commelinid monocots. New Phytol 209:855–870.  https://doi.org/10.1111/nph.13617 CrossRefPubMedGoogle Scholar
  6. Baum DA, Smith ST, Yen A, Alverson WS, Nyffeler R, Whitlock BA, Oldham RL (2004) Phylogenetic relationships of Malvatheca (Bombacoideae and Malvoideae; Malvaceae Sensu Lato) as inferred from plastid DNA sequences. Am J Bot 91:1863–1871.  https://doi.org/10.3732/ajb.91.11.1863 CrossRefPubMedGoogle Scholar
  7. Bayer C, Fay MF, De Bruijn AY, Savolainen V, Morton CM, Kubitzki K, Alverson WS, Chase MW (1999) Support for an expanded family concept of Malvaceae within a recircumscribed order Malvales: a combined analysis of plastid atpB and rbcL DNA sequences. Bot J Linn Soc 129:267–303.  https://doi.org/10.1111/j.1095-8339.1999.tb00505.x CrossRefGoogle Scholar
  8. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580.  https://doi.org/10.1093/nar/27.2.573 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bock R (2013) Strategies for metabolic pathway engineering with multiple transgenes. Plant Mol Biol 83:21–31.  https://doi.org/10.1007/s11103-013-0045-0 CrossRefPubMedGoogle Scholar
  10. Bock R (2015) Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Annu Rev Plant Biol 66:211–241.  https://doi.org/10.1146/annurev-arplant-050213-040212 CrossRefGoogle Scholar
  11. Bock R (2017) Witnessing genome evolution: experimental reconstruction of endosymbiotic and horizontal gene transfer. Annu Rev Genet 51:1–22.  https://doi.org/10.1146/annurev-genet-120215-035329 CrossRefPubMedGoogle Scholar
  12. Bock R, Albertazzi F, Freyer R, Fuchs M, Ruf S, Zeltz P, Maier RM (1997) Transcript editing in chloroplasts of higher plants. In: Schenk HEA, Herrmann RG, Jeon KW, Müller NE, Schwemmler W (eds) Eukaryotism and symbiosis. Springer, Berlin, pp 123–137.  https://doi.org/10.1007/978-3-642-60885-8_9 CrossRefGoogle Scholar
  13. Bouvier F, Dogbo O, Câmara B (2003) Biosynthesis of the food and cosmetic plant pigment bixin (annatto). Science 300:2089–2091.  https://doi.org/10.1126/science.1085162 CrossRefPubMedGoogle Scholar
  14. Bubunenko MG, Schmidt J, Subramanian AR (1994) Protein substitution in chloroplast ribosome evolution. A eukaryotic cytosolic protein has replaced its organelle homologue (L23) in spinach. J Mol Biol 240:28–41.  https://doi.org/10.1006/jmbi.1994.1415 CrossRefPubMedGoogle Scholar
  15. Cai J, Ma P-F, Li H-T, Li D-Z (2015) Complete plastid genome sequencing of four Tilia species (Malvaceae): a comparative analysis and phylogenetic implications. PLoS One 10:e0142705.  https://doi.org/10.1371/journal.pone.0142705 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cárdenas-Conejo Y, Carballo-Uicab V, Lieberman M, Aguilar-Espinosa M, Comai L, Rivera-Madrid R (2015) De novo transcriptome sequencing in Bixa orellana to identify genes involved in methylerythritol phosphate, carotenoid and bixin biosynthesis. BMC Genom 16:877.  https://doi.org/10.1186/s12864-015-2065-4 CrossRefGoogle Scholar
  17. Carvalho JFRP, Robinson IP, Alfenas AC (2005) Isozymic variability in a Brazilian collection of annatto (Bixa orellana L.). Pesq Agropec Bras 40:653–660.  https://doi.org/10.1590/S0100-204X2005000700005 CrossRefGoogle Scholar
  18. Cho WB, Han EK, Choi G, Lee JH (2017) The complete chloroplast genome of Daphne kiusiana, an evergreen broad-leaved shrub on Jeju Island. Conserv Genet Resour 10:103–106.  https://doi.org/10.1007/s12686-017-0774-5 CrossRefGoogle Scholar
  19. Clement CR, Cristo-Araújo M, d’Eeckenbrugge GC, Alves-Pereira A, Picanço-Rodrigues D (2010) Origin and domestication of native Amazonian crops. Diversity 2:72–106.  https://doi.org/10.3390/d2010072 CrossRefGoogle Scholar
  20. Comer JR, Zomlefer WB, Barrett CF, Davis JI, Stevenson DW, Heyduk K, Leebens-Mack JH (2015) Resolving relationships within the palm subfamily Arecoideae (Arecaceae) using plastid sequences derived from next-generation sequencing. Am J Bot 102:888–899.  https://doi.org/10.3732/ajb.1500057 CrossRefPubMedGoogle Scholar
  21. Corneille S, Lutz K, Maliga P (2000) Conservation of RNA editing between rice and maize plastids: are most editing events dispensable? Mol Gen Genet MGG 264:419–424.  https://doi.org/10.1007/s004380000295 CrossRefPubMedGoogle Scholar
  22. Cummings HS, Hershey JW (1994) Translation initiation factor IF1 is essential for cell viability in Escherichia coli. J Bacteriol 176:198–205.  https://doi.org/10.1128/jb.176.1.198-205.1994 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Da Cruz ACF, Pinheiro MVM, Xavier A, Otoni WC, Costa MGC, Paiva Neto VB, Rêgo MM (2015) In vitro regeneration of Annatto (Bixa orellana L.) plantlets from nodal and internodal adult stem explants. Acta Hortic 1083:335–346CrossRefGoogle Scholar
  24. Daniell H, Wurdack KJ, Kanagaraj A, Lee SB, Saski C, Jansen RK (2008) The complete nucleotide sequence of the cassava (Manihot esculenta) chloroplast genome and the evolution of atpF in Malpighiales: RNA editing and multiple losses of a group II intron. Theor Appl Genet 116:723–737.  https://doi.org/10.1007/s00122-007-0706-y CrossRefPubMedPubMedCentralGoogle Scholar
  25. Daniell H, Lin CS, Yu M, Chang WJ (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 17:134.  https://doi.org/10.1186/s13059-016-1004-2 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403.  https://doi.org/10.1101/gr.2289704 CrossRefPubMedPubMedCentralGoogle Scholar
  27. de Araújo Vilar D, de Araujo Vilar MS, de Accioly Lima e Moura TF et al (2014) Traditional uses, chemical constituents, and biological activities of Bixa orellana L.: a review. Sci World J 2014:1–11.  https://doi.org/10.1155/2014/857292 CrossRefGoogle Scholar
  28. de Matos EM, Koehler AD, Faria DV, Correia LNF, Moreira VS, de Cruz ACF, Moraes TS, Rocha DI, Soares VLF, Paiva Neto VB, Costa MGC, Otoni WC (2016) Somatic embryogenesis in Annatto (Bixa orellana L.). In: Loyola-Vargas Víctor M, Ochoa-Alejo N (eds) Somatic embryogenesis: fundamental aspects and applications, vol 1, 1st edn. Springer Nature, Cham, pp 213–231.  https://doi.org/10.1007/978-3-319-33705-0_13 CrossRefGoogle Scholar
  29. Dequigiovanni G, Ramos SLF, Zucchi MI, Bajay MM, Pinheiro JB, Fabri EG, Bressan EA, Veasey EA (2014) Isolation and characterization of microsatellite loci for Bixa orellana, an important source of natural dyes. Genet Mol Res 13:9097–9102.  https://doi.org/10.4238/2014.October.31.25 CrossRefPubMedGoogle Scholar
  30. Dequigiovanni G, Ramos SLF, Lopes MTG, Clement CR, Rodrigues DP, Fabri EG, Zucchi MI, Veasey EA (2018) New microsatellite loci for annato (Bixa orellana), a source of natural dyes from Brazilian Amazonia. Crop Breed Appl Biotechnol 18:116–122.  https://doi.org/10.1590/1984-70332018v18n1n18 CrossRefGoogle Scholar
  31. Dugas DV, Hernandez D, Koenen EJ, Schwarz E, Straub S, Hughes CE, Jansen RK, Nageswara-Rao M, Staats M, Trujillo JT, Hajrah NH, Alharbi NS, Al-Malki AL, Sabir JSM, Bailey CD (2015) Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP. Sci Rep 5:16958.  https://doi.org/10.1038/srep16958 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ebert D, Peakall R (2009) Chloroplast simple sequence repeats (cpSSRs): technical resources and recommendations for expanding cpSSR discovery and applications to a wide array of plant species. Mol Ecol Resour 9:673–690.  https://doi.org/10.1111/j.1755-0998.2008.02319.x CrossRefPubMedGoogle Scholar
  33. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797.  https://doi.org/10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Fay MF, Bayer C, Alverson WS et al (1998) Plastid rbcL sequence data indicate a close affinity between Diegodendron and Bixa. Taxon 47:43–50.  https://doi.org/10.2307/1224017 CrossRefGoogle Scholar
  35. Fleischmann TT, Scharff LB, Alkatib S, Hasdorf S, Schottler MA, Bock R (2011) Nonessential plastid-encoded ribosomal proteins in tobacco: a developmental role for plastid translation and implications for reductive genome evolution. Plant Cell 23:3137–3155.  https://doi.org/10.1105/tpc.111.088906 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Fuentes P, Armarego-Marriott T, Bock R (2017) Plastid transformation and its application in metabolic engineering. Curr Opin Biotechnol 49:10–15.  https://doi.org/10.1016/j.copbio.2017.07.004 CrossRefPubMedGoogle Scholar
  37. George B, Bhatt BS, Awasthi M, George B, Singh AK (2015) Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants. Curr Genet 61:665–677.  https://doi.org/10.1007/s00294-015-0495-9 CrossRefPubMedGoogle Scholar
  38. Giridhar P, Parimalan R (2010) A biotechnological perspective towards improvement of annatto color production for value addition—the infuence of biotic elicitors. Asia Pac J Mol Biol Biotechnol 18:77–79Google Scholar
  39. Giuliano G, Salim A, von Lintig J (2003) Carotenoid oxygenases: cleave it or leave it. Trends Plant Sci 8:145–149.  https://doi.org/10.1016/S1360-1385(03)00053-0 CrossRefPubMedGoogle Scholar
  40. Goulding SE, Olmstead RG, Morden CW, Wolfe KH (1996) Ebb and flow of the chloroplast inverted repeat. Mol Gen Genet MGG 252:195–206.  https://doi.org/10.1007/BF02173220 CrossRefPubMedGoogle Scholar
  41. Guesmi A, Hamadi NB, Ladhari N, Sakli F (2013) Sonicator dyeing of modified acrylic fabrics with indicaxanthin natural dye. Ind Crops Prod 42:63–69.  https://doi.org/10.1016/j.indcrop.2012.05.022 CrossRefGoogle Scholar
  42. Gurdon C, Maliga P (2014) Two distinct plastid genome configurations and unprecedented intraspecies length variation in the accD coding region in Medicago truncatula. DNA Res 21:417–427.  https://doi.org/10.1093/dnares/dsu007 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hirose T, Kusumegi T, Tsudzuki T, Sugiura M (1999) RNA editing sites in tobacco chloroplast transcripts: editing as a possible regulator of chloroplast RNA polymerase activity. Mol Gen Genet MGG 262:462–467.  https://doi.org/10.1007/s004380051106 CrossRefPubMedGoogle Scholar
  44. Huang YY, Matzke AJM, Matzke M (2013) Complete sequence and comparative analysis of the chloroplast genome of coconut palm (Cocos nucifera). PLoS One 8:e74736.  https://doi.org/10.1371/journal.pone.0074736 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Jansen RK, Kaittanis C, Saski C, Lee SB, Tomkins J, Alverson AJ, Daniell H (2006) Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evol Biol 6:32.  https://doi.org/10.1186/1471-2148-6-32 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Jiang Y, Fan SL, Song MZ, Yu JN, Yu SX (2012) Identification of RNA editing sites in cotton (Gossypium hirsutum) chloroplasts and editing events that affect secondary and three-dimensional protein structures. Genet Mol Res 11:987–1001.  https://doi.org/10.4238/2012.April.19.4 CrossRefPubMedGoogle Scholar
  47. Kahlau S, Aspinall S, Gray JC, Bock R (2006) Sequence of the tomato chloroplast DNA and evolutionary comparison of solanaceous plastid genomes. J Mol Evol 63:194–207.  https://doi.org/10.1007/s00239-005-0254-5 CrossRefPubMedGoogle Scholar
  48. Kane N, Sveinsson S, Dempewolf H, Yang JY, Zhang D, Engels M, Cronk JM (2012) Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA. Am J Bot 99:320–329.  https://doi.org/10.3732/ajb.1100570 CrossRefPubMedGoogle Scholar
  49. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780.  https://doi.org/10.1093/molbev/mst010 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Krech K, Fu HY, Thiele W, Ruf S, Schöttler MA, Bock R (2013) Reverse genetics in complex multigene operons by co-transformation of the plastid genome and its application to the open reading frame previously designated psbN. Plant J 75:1062–1074.  https://doi.org/10.1111/tpj.12256 CrossRefPubMedGoogle Scholar
  51. Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29:4633–4642.  https://doi.org/10.1186/gb-2004-5-2-r12 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Labiak PH, Karol KG (2017) Plastome sequences of an ancient fern lineage reveal remarkable changes in gene content and architecture. Am J Bot.  https://doi.org/10.3732/ajb.1700135 (in press) CrossRefPubMedGoogle Scholar
  53. Le Péchon T, Gigord LDB (2014) On the relevance of molecular tools for taxonomic revision in Malvales, Malvaceae s.l., and Dombeyoideae. In: Besse P (ed) Molecular plant taxonomy. Methods in molecular biology (methods and protocols), vol 1115. Humana Press, Totowa.  https://doi.org/10.1007/978-1-62703-767-9_17 CrossRefGoogle Scholar
  54. Leal F, Clavijo CM (2010) Annatto: a natural dye from the tropics. Chron Hortic 50:34–36Google Scholar
  55. Lee SB, Kaittanis C, Jansen RK, Hostetler JB, Tallon LJ, Town CD, Daniell H (2006) The complete chloroplast genome sequence of Gossypium hirsutum: organization and phylogenetic relationships to other angiosperms. BMC Genom 7:61–72.  https://doi.org/10.1186/1471-2164-7-61 CrossRefGoogle Scholar
  56. Logacheva MD, Samigullin TH, Dhingra A, Penin AA (2008) Comparative chloroplast genomics and phylogenetics of Fagopyrum esculentum ssp. ancestrale—a wild ancestor of cultivated buckwheat. BMC Plant Biol 8:59.  https://doi.org/10.1186/1471-2229-8-59 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Lohse M, Drechsel O, Kahlau S, Bock R (2013) OrganellarGenome-DRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res 41:W575–W581.  https://doi.org/10.1093/nar/gkt289 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Lopes AS, Gomes Pacheco T, do Nascimento Vieira L, Guerra MP, Nodari RO, de Maltempi Souza E, de Oliveira Pedrosa F, Rogalski M (2018a) The Crambe abyssinica plastome: Brassicaceae phylogenomic analysis, evolution of RNA editing sites, hotspot and microsatellite characterization of the tribe Brassiceae. Gene 671:36–49.  https://doi.org/10.1016/j.gene.2018.05.088 CrossRefGoogle Scholar
  59. Lopes AS, Gomes Pacheco T, Nimz T, do Nascimento Vieira L, Guerra MP, Nodari RO, de Maltempi Souza E, de Oliveira Pedrosa F, Rogalski M (2018b) The complete plastome of macaw palm [Acrocomia aculeata (Jacq.) Lodd. ex Mart.] and extensive molecular analyses of the evolution of plastid genes in Arecaceae. Planta 247:1011–1030.  https://doi.org/10.1007/s00425-018-2841-x CrossRefGoogle Scholar
  60. Lopes AS, Pacheco TG, Santos KG, Vieira LN, Guerra MP, Nodari RO, Souza EM, Pedrosa FO, Rogalski M (2018c) The Linum usitatissimum L. plastome reveals atypical structural evolution, new editing sites, and the phylogenetic position of Linaceae within Malpighiales. Plant Cell Rep 37:307–328.  https://doi.org/10.1007/s00299-017-2231-z CrossRefGoogle Scholar
  61. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964.  https://doi.org/10.1093/nar/25.5.0955 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Lu Y, Stegemann S, Agrawal S, Karcher D, Ruf S, Bock R (2017) Horizontal transfer of a synthetic metabolic pathway between plant species. Curr Biol 27:3034–3041.  https://doi.org/10.1016/j.cub.2017.08.044 CrossRefPubMedGoogle Scholar
  63. Magee AM, Aspinall S, Rice DW, Cusack BP, Semon M, Perry AS, Stefanovic S, Milbourne D, Barth S, Palmer JD, Gray JC, Kavanagh TA, Wolfe KH (2010) Localized hypermutation and associated gene losses in legume chloroplast genomes. Genome Res 20:1700–1710.  https://doi.org/10.1101/gr.111955.110 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Maier RM, Neckermann K, Igloi GL, Kössel H (1995) Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251:614–628.  https://doi.org/10.1006/jmbi.1995.0460 CrossRefPubMedGoogle Scholar
  65. Mantovani NC, Grando MF, Xavier A, Otoni WC (2013) Avaliação de genótipos de urucum (Bixa orellana L.) por meio da caracterização morfológica de frutos, produtividade de sementes e teor de bixina. Ciência Florestal 23:355–362.  https://doi.org/10.5902/198050989281 CrossRefGoogle Scholar
  66. Millen RS, Olmstead RG, Adams KL, Palmer JD, Lao NT, Heggie L, Kavanagh TA, Hibberd JM, Gray JC, Morden CW (2001) Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell 13:645–658.  https://doi.org/10.1105/tpc.13.3.645 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Moreira PA, Lins J, Dequigiovanni G, Veasey EA, Clement CR (2015) The domestication of annato (Bixa orellana) from Bixa urucurana in Amazonia. Econ Bot 69:127–135.  https://doi.org/10.1007/s12231-015-9304-0 CrossRefGoogle Scholar
  68. Mower JP (2009) The PREP suite: predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments. Nucleic Acids Res 37:W253–W259.  https://doi.org/10.1093/nar/gkp337 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Nguyen L-T, Schmidt HA, Haeseler AV, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274.  https://doi.org/10.1093/molbev/msu300 CrossRefPubMedGoogle Scholar
  70. Nyffeler R, Bayer C, Alverson WS, Yen A, Whitlock B, Chase MW, Baum DA (2005) Phylogenetic analysis of the Malvadendrina clade (Malvaceae s.l) based on plastid DNA sequences. Org Divers Evol 5:109–123.  https://doi.org/10.1016/j.ode.2004.08.001 CrossRefGoogle Scholar
  71. Paiva Neto VB, Ribeiro da Mota T, Otoni WC (2003) Direct organogenesis from hypocotyl-derived explants of annatto (Bixa orellana). Plant Cell Tissue Organ Cult 75:159.  https://doi.org/10.1023/A:1025063906822 CrossRefGoogle Scholar
  72. Parimalan R, Giridhar P, Ravishankar GA (2011) Enhanced shoot organogenesis in Bixa orellana L. in the presence of putrescine and silver nitrate. Plant Cell Tissue Organ Cult 105:285–290.  https://doi.org/10.1007/s11240-010-9865-7 CrossRefGoogle Scholar
  73. Park S, Ruhlman TA, Weng ML, Hajrah NH, Sabir JSM, Jansen RK (2017) Contrasting patterns of nucleotide substitution rates provide insight into dynamic evolution of plastid and mitochondrial genomes of geranium. Genome Biol Evol 9:1766–1780.  https://doi.org/10.1093/gbe/evx124 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Piot A, Hackel J, Christin PA, Besnard G (2018) One-third of the plastid genes evolved under positive selection in PACMAD grasses. Planta 247:255–266.  https://doi.org/10.1007/s00425-017-2781-x CrossRefPubMedGoogle Scholar
  75. Plöchinger M, Torabi S, Rantala M, Tikkanen M, Suorsa M, Jensen PE, Aro EM, Meurer J (2016) The low molecular weight protein PsaI stabilizes the light-harvesting complex II docking site of photosystem I. Plant Physiol 172:450–463.  https://doi.org/10.1104/pp.16.00647 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Portela de Carvalho JFR, de Portela Carvalho CR, Otoni WC (2005) In vitro induction of polyploidy in annatto (Bixa orellana). Plant Cell Tissue Organ Cult 80:69–75.  https://doi.org/10.1007/s11240-004-8833-5 CrossRefGoogle Scholar
  77. Powell W, Morgantet M, Andre C, McNicol JW, Machray GC, Doyle JJ, Tingey SV, Rafalski JA (1995) Hypervariable microsatellites provide a general source of polymorphic DNA markers for the chloroplast genome. Curr Biol 5:1023–1029.  https://doi.org/10.1016/S0960-9822(95)00206-5 CrossRefPubMedGoogle Scholar
  78. Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16:142–147.  https://doi.org/10.1016/S0169-5347(00)02097-8 CrossRefPubMedGoogle Scholar
  79. Ramamoorthy S, Dossa FP, Kundua K, Satyanarayanab VSV, Kumarb V (2010) Molecular characterization of bixin an important industrial product. Ind Crops Prod 32:48–53.  https://doi.org/10.1016/j.indcrop.2010.03.001 CrossRefGoogle Scholar
  80. Raman G, Park S (2015) Analysis of the complete chloroplast genome of a medicinal plant, Dianthus superbus var. longicalyncinus, from a comparative genomics perspective. PLoS One 10:e0141329.  https://doi.org/10.1371/journal.pone.0141329 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Raubeson LA, Peery R, Chumley TW, Dziubek C, Fourcade HM, Boore JL, Jansen RK (2007) Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar and Ranunculus macranthus. BMC Genom 8:174.  https://doi.org/10.1186/1471-2164-8-174 CrossRefGoogle Scholar
  82. Rivera-Madrid R, Escobedo-GM RM, Balam-Galera E, Vera-Ku M, Harries H (2006) Preliminary studies toward genetic improvement of annatto (Bixa orellana L.). Sci Hortic 109:165–172.  https://doi.org/10.1016/j.scienta.2006.03.011 CrossRefGoogle Scholar
  83. Rivera-Madrid R, Burnell J, Aguilar-Espinosa M, Rodríguez-Ávila NL, LugoCervantes E, Sáenz-Carbonell LA (2013) Control of carotenoid gene expression in Bixa orellana L. leaves treated with norflurazon. Plant Mol Biol Rep 31:1422–1432.  https://doi.org/10.1007/s11105-013-0604-1 CrossRefGoogle Scholar
  84. Rivera-Madrid R, Aguilar-Espinosa M, Cárdenas-Conejo Y, Garza-Caligaris LE (2016) Carotenoid derivates in achiote (Bixa orellana) seeds: synthesis and health promoting properties. Front Plant Sci 7:1406.  https://doi.org/10.3389/fpls.2016.01406 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Rodríguez-Ávila NL, Narváez-Zapata JA, Aguilar-Espinosa M, Rivera-Madrid R (2011) Regulation of pigment-related genes during flower and fruit development of Bixa orellana. Plant Mol Biol Rep 29:43–50.  https://doi.org/10.1007/s11105-010-0207-z CrossRefGoogle Scholar
  86. Rogalski M, Carrer H (2011) Engineering plastid fatty acid biosynthesis to improve food quality and biofuel production in higher plants: plastid fatty acid biosynthesis. Plant Biotechnol J 9:554–564.  https://doi.org/10.1111/j.1467-7652.2011.00621.x CrossRefPubMedGoogle Scholar
  87. Rogalski M, Ruf S, Bock R (2006) Tobacco plastid ribosomal protein S18 is essential for cell survival. Nucleic Acids Res 34:4537–4545.  https://doi.org/10.1093/nar/gkl634 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Rogalski M, Schoettler MA, Thiele W, Schulze WX, Bock R (2008) Rpl33, a nonessential plastid encoded ribosomal protein in tobacco, is required under cold stress conditions. Plant Cell 20:2221–2237.  https://doi.org/10.1105/tpc.108.060392 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Rogalski M, do Nascimento Vieira L, Fraga HP, Guerra MP (2015) Plastid genomics in horticultural species: importance and applications for plant population genetics, evolution, and biotechnology. Front Plant Sci 6:586.  https://doi.org/10.3389/fpls.2015.00586 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542.  https://doi.org/10.1093/sysbio/sys029 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Roquet C, Coissac É, Cruaud C, Boleda M, Boyer F, Alberti A, Gielly L, Taberlet P, Thuiller W, Van Es J, Lavergne S (2016) Understanding the evolution of holoparasitic plants: the complete plastid genome of the holoparasite Cytinus hypocistis (Cytinaceae). Ann Bot 118:885–896.  https://doi.org/10.1093/aob/mcw135 CrossRefPubMedCentralGoogle Scholar
  92. Roy PS, Rao GJN, Jena S, Samal R, Patnaik A, Patnaik SSC, Jambhulkar NN, Sharma S, Mohapatra T (2016) Nuclear and chloroplast DNA variation provides insights into population structure and multiple origin of native aromatic rices of Odisha, India. PLoS One 11:e0162268.  https://doi.org/10.1371/journal.pone.0162268 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Ruhlman TA, Zhang J, Blazier JC, Sabir JSM, Jansen RK (2017) Recombination-dependent replication and gene conversion homogenize repeat sequences and diversify plastid genome structure. Am J Bot 104:559–572.  https://doi.org/10.3732/ajb.1600453 CrossRefPubMedGoogle Scholar
  94. Sankari M, Hemachandran H, Anantharaman A, Babu S, Madrid RR, Fulzele DP, Siva R (2016) Identifying a carotenoid cleavage dioxygenase 4a gene and its efficient agrobacterium-mediated genetic transformation in Bixa orellana L. Appl Biochem Biotechnol 179:697–714.  https://doi.org/10.1007/s12010-016-2025-8 CrossRefPubMedGoogle Scholar
  95. Savolainen V, Chase MW, Hoot SB, Morton CM, Soltis DE, Bayer C, Fay MF, de Bruijn AY, Sullivan S, Qiu Y-L (2000) Phylogenetics of flowering plants based upon a combined analysis of plastid atpB and rbcL gene sequences. Syst Biol 49:306–362.  https://doi.org/10.1093/sysbio/49.2.306 CrossRefPubMedGoogle Scholar
  96. Schmitz-Linneweber C, Regel R, Du TG, Hupfer H, Herrmann RG, Maier RM (2002) The plastid chromosome of Atropa belladonna and its comparison with that of Nicotiana tabacum: the role of RNA editing in generating divergence in the process of plant speciation. Mol Biol Evol 19:1602–1612.  https://doi.org/10.1093/oxfordjournals.molbev.a004222 CrossRefPubMedGoogle Scholar
  97. Schöttler MA, Thiele W, Belkius K, Bergner SV, Flügel C, Wittenberg G, Agrawal S, Stegemann S, Ruf S, Bock R (2017) The plastid-encoded PsaI subunit stabilizes photosystem I during leaf senescence in tobacco. J Exp Bot 68:1137–1155.  https://doi.org/10.1093/jxb/erx009 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Shinozaki K, Ohme M, Tanaka M et al (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049CrossRefGoogle Scholar
  99. Sloan DB, Triant DA, Forrester NJ, Bergner LM, Wu M, Taylor DR (2014) A recurring syndrome of accelerated plastid genome evolution in the angiosperm tribe Sileneae (Caryophyllaceae). Mol Phylogenet Evol 72:82–89.  https://doi.org/10.1016/j.ympev.2013.12.004 CrossRefPubMedGoogle Scholar
  100. Smith DR (2015) Mutation rates in plastid genomes: they are lower than you might think. Genome Biol Evol 7:1227–1234.  https://doi.org/10.1093/gbe/evv069 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Soltis DE, Soltis PS, Chase MW, Mort ME, Albach DC, Zanis M, Savolainen V, Hahn WH, Hoop SB, Fay MF, Axtell M, Swesen SM, Farrise JS, Prince LM, Kress WJ, Nixon KC, Farris JS (2000) Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot J Linn Soc 133:381–461. https://doi.org/10.1m/b0j1.2000.0380Google Scholar
  102. Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, Refulio-Rodriguez NF, Walker JB, Moorer MJ, Carlsward BS, Bell CD, Latvis M, Crawley S, Black C, Diouf D, Xi Z, Rushworth CA, Gitzendanner MA, Sytsma K, Qiu Y-L, Hilu KW, Davis CC, Sanderson MJ, Beaman RS, Olmstead RG, Judd WS, Donoghue MJ, Soltis PS (2011) Angiosperm phylogeny: 17 genes, 640 taxa. Am J Bot 98:704–730.  https://doi.org/10.3732/ajb.1000404 CrossRefPubMedGoogle Scholar
  103. Takenaka M, Zehrmann A, Verbitskiy D, Härtel B, Brennicke A (2013) RNA editing in plants and its evolution. Annu Rev Genet 47:335–352.  https://doi.org/10.1146/annurev-genet-111212-133519 CrossRefGoogle Scholar
  104. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729.  https://doi.org/10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Tangphatsornruang S, Uthaipaisanwong P, Sangsrakru D, Chanprasert J, Yoocha T, Jomchai N, Tragoonrung S (2011) Characterization of the complete chloroplast genome of Hevea brasiliensis reveals genome rearrangement, RNA editing sites and phylogenetic relationships. Gene 475:104–112.  https://doi.org/10.1016/j.gene.2011.01.002 CrossRefPubMedGoogle Scholar
  106. Teixeira da Silva JA, Dobránszki J, Rivera-Madrid R (2018) The biotechnology (genetic transformation and molecular biology) of Bixa orellana L. (achiote). Planta.  https://doi.org/10.1007/s00425-018-2909-7 (in press) CrossRefPubMedGoogle Scholar
  107. The Plant List (2013) Version 1.1. http://www.theplantlist.org/. Accessed 12 June 2018
  108. Thiel T, Michalek W, Varshney R, Graner A (2003) Exploiting EST databases for the development and characterization of genederived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422.  https://doi.org/10.1007/s00122-002-1031-0 CrossRefGoogle Scholar
  109. Tillich M, Funk HT, Schmitz-Linneweber C, Poltnigg P, Sabater B, Martin M, Maier RM (2005) Editing of plastid RNA in Arabidopsis thaliana ecotypes. Plant J 43:708–715.  https://doi.org/10.1111/j.1365-313X.2005.02484.x CrossRefPubMedGoogle Scholar
  110. Tsai CC, Chou CH, Wang HV, Ko YZ, Chiang TY, Chiang YC (2015) Biogeography of the Phalaenopsis amabilis species complex inferred from nuclear and plastid DNAs. BMC Plant Biol 15:202.  https://doi.org/10.1186/s12870-015-0560-z CrossRefPubMedPubMedCentralGoogle Scholar
  111. Tsudzuki T, Wakasugi T, Sugiura M (2001) Comparative analysis of RNA editing sites in higher plant chloroplasts. J Mol Evol 53:327–332.  https://doi.org/10.1007/s002390010222 CrossRefPubMedGoogle Scholar
  112. Vieira LN, Faoro H, Fraga HPF, Rogalski M, de Souza EM, Pedrosa FO, Nodari RO, Guerra MP (2014) An improved protocol for intact chloroplasts and cpDNA isolation in conifers. PLoS One 9:e84792.  https://doi.org/10.1371/journal.pone.0084792 CrossRefPubMedCentralGoogle Scholar
  113. Vieira LN, Dos Anjos KG, Faoro H, Fraga HP, Greco TM, Pedrosa FO, de Souza EM, Rogalski M, de Souza RF, Guerra MP (2016a) Phylogenetic inference and SSR characterization of tropical woody bamboos tribe Bambuseae (Poaceae: Bambusoideae) based on complete plastid genome sequences. Curr Genet 62(2):443–453.  https://doi.org/10.1007/s00294-015-0549-z CrossRefGoogle Scholar
  114. Vieira LN, Rogalski M, Faoro H, Fraga HP, Anjos KG, Picchi GFA, Nodari RO, Pedrosa FO, Souza EM, Guerra MP (2016b) The plastome sequence of the endemic Amazonian conifer, Retrophyllum piresii (Silba) CNPage, reveals different recombination events and plastome isoforms. Tree Genet Genomes 12:10.  https://doi.org/10.1007/s11295-016-0968-0 CrossRefGoogle Scholar
  115. Wakasugi T, Tsudzuki T, Sugiura M (2001) The genomics of land plant chloroplasts: gene content and alteration of genomic information by RNA editing. Photosynth Res 70:107–118.  https://doi.org/10.1023/A:1013892009589 CrossRefGoogle Scholar
  116. Walker JF, Jansen RK, Zanis MJ, Emery NC (2015) Sources of inversion variation in the small single copy (SSC) region of chloroplast genomes. Am J Bot 102:1751–1752.  https://doi.org/10.3732/ajb.1500299 CrossRefPubMedGoogle Scholar
  117. Wambulwa MC, Meegahakumbura MK, Kamunya S, Muchugi A, Möller M, Liu J, Xu JC, Ranjitkar S, Li DZ, Gao LM (2016) Insights into the genetic relationships and breeding patterns of the African tea germplasm based on nSSR markers and cpDNA sequences. Front Plant Sci 7:1244.  https://doi.org/10.3389/fpls.2016.01244 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Wang Y, Zhan D-F, Jia X, Mei W-L, Dai H-F, Chen X-T, Peng S-Q (2016) Complete chloroplast genome sequence of Aquilaria sinensis (Lour). Gilg and evolution analysis with in the Malvales order. Front Plant Sci 7:280.  https://doi.org/10.3389/fpls.2016.00280 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Wang JH, Cai YC, Zhao KK, Zhu ZX, Zhou RC, Wang HF (2018) Characterization of the complete chloroplast genome sequence of Firmiana pulcherrima (Malvaceae). Conserv Genet Resour 10:445.  https://doi.org/10.1007/s12686-017-0845-7 CrossRefGoogle Scholar
  120. Wheeler GL, Dorman HE, Buchanan A, Challagundla L, Wallace LE (2014a) A review of the prevalence, utility, and caveats of using chloroplast simple sequence repeats for studies of plant biology. Appl Plant Sci 2:1400059.  https://doi.org/10.3732/apps.1400059 CrossRefGoogle Scholar
  121. Wheeler GL, Dorman HE, Buchanan A, Challagundla L, Wallace LE (2014b) A review of the prevalence, utility, and caveats of using chloroplast simple sequence repeats for studies of plant biology. Appl Plant Sci 2(12):1400.  https://doi.org/10.3732/apps.1400059 CrossRefGoogle Scholar
  122. Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255.  https://doi.org/10.1093/bioinformatics/bth352 CrossRefGoogle Scholar
  123. Yang J-B, Yang S-X, Li H-T, Yang J, Li D-Z (2013) Comparative chloroplast genomes of Camellia species. PLoS One 8:e73053.  https://doi.org/10.1371/journal.pone.0073053 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Yu J, Ma PJ, Shi DJ, Li SM, Wang CL (2008) Homologous comparisons of photosynthetic system I genes among cyanobacteria and chloroplasts. J Integr Plant Biol 50:929–940.  https://doi.org/10.1111/j.1744-7909.2008.00679.x CrossRefPubMedGoogle Scholar
  125. Zaldívar-Cruz J, Ballina-Gómez H, Guerrero-Rodríguez C, Avilés-Berzunza E, Godoy-Hernández GC (2003) Agrobacterium-mediated transient transformation of annatto (Bixa orellana) hypocotyls with the GUS reporter gene. Plant Cell Tissue Organ Cult 73:281–284.  https://doi.org/10.1023/A:1023037108705 CrossRefGoogle Scholar
  126. Zhai B, Clark J, Ling T, Connelly M, Medina-Bolivar F, Rivas F (2014) Antimalarial evaluation of the chemical constituents of hairy root cultures of Bixa orellana. Molecules 19:756–766.  https://doi.org/10.3390/molecules19010756 CrossRefPubMedGoogle Scholar
  127. Zhang J, Khan SA, Heckel DG, Bock R (2017) Next-generation insect-resistant plants: RNAi-mediated crop protection. Trends Biotechnol 35:871–882.  https://doi.org/10.1016/j.tibtech.2017.04.009 CrossRefPubMedGoogle Scholar
  128. Zhu A, Guo W, Gupta S, Fan W, Mower JP (2016) Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. New Phytol 209:1747–1756.  https://doi.org/10.1111/nph.13743 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Túlio Gomes Pacheco
    • 1
  • Amanda de Santana Lopes
    • 1
  • Gélia Dinah Monteiro Viana
    • 1
  • Odyone Nascimento da Silva
    • 1
  • Gleyson Morais da Silva
    • 1
  • Leila do Nascimento Vieira
    • 2
  • Miguel Pedro Guerra
    • 2
  • Rubens Onofre Nodari
    • 2
  • Emanuel Maltempi de Souza
    • 3
  • Fábio de Oliveira Pedrosa
    • 3
  • Wagner Campos Otoni
    • 4
  • Marcelo Rogalski
    • 1
  1. 1.Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia VegetalUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-graduação em Recursos Genéticos VegetaisUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  3. 3.Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de NitrogênioUniversidade Federal do ParanáCuritibaBrazil
  4. 4.Laboratório de Cultura de Tecidos Vegetais, Departamento de Biologia VegetalBIOAGRO, Universidade Federal de ViçosaViçosaBrazil

Personalised recommendations