Advertisement

Planta

, Volume 248, Issue 5, pp 1331–1337 | Cite as

Transcription of soybean retrotransposon SORE-1 is temporally upregulated in developing ovules

  • Kenta Nakashima
  • Mayumi Tsuchiya
  • Sae Fukushima
  • Jun Abe
  • Akira Kanazawa
Short Communication

Abstract

Main conclusion

Transcription of soybean retrotransposon SORE-1 was temporally upregulated during ovule development. This transcriptional pattern was under intrinsic control conferred by the long terminal repeat of SORE-1.

Transcriptionally active retrotransposons are capable of inducing random disruption of genes, providing a powerful tool for mutagenesis. Activation of retrotransposons in reproductive cells, in particular, can lead to heritable changes. Here, we examined developmental control of transcription of soybean retrotransposon SORE-1. Transgenic Arabidopsis plants that contain β-glucuronidase (GUS) reporter gene fused with the SORE-1 long terminal repeat (LTR) had GUS staining in the ovule. Quantitative analysis of transcripts in plants with this DNA construct and those with the full-length SORE-1 element indicated a temporal upregulation of SORE-1 transcription during ovule development. A comparable phenomenon was also observed in soybean plants that had a recent insertion of this element in the GmphyA2 gene. These results provide evidence that the temporal upregulation of SORE-1 in the reproductive organ is sufficiently controlled by its LTR and indicate that the intrinsic expression pattern of SORE-1 is consistent with its mutagenic property.

Keywords

Gametophyte Long terminal repeat Ovule Retrotransposon Soybean Transcriptional control 

Abbreviations

GUS

β-Glucuronidase

LTR

Long terminal repeat

TE

Transposable elements

Notes

Acknowledgements

We thank Yui Shiroshita, Natasia and Mei Kimura for technical help and Tetsuya Yamada for technical advice. This work was supported in part by JSPS KAKENHI Grant number JP17H03743.

Supplementary material

425_2018_3005_MOESM1_ESM.pdf (343 kb)
Supplementary material 1 (PDF 342 kb)

References

  1. Abe J, Xu D, Miyano A, Komatsu K, Kanazawa A, Shimamoto Y (2003) Photoperiod-insensitive Japanese soybean landraces differ at two maturity loci. Crop Sci 43:1300–1304.  https://doi.org/10.2135/cropsci2003.1300 CrossRefGoogle Scholar
  2. Blumenstiel JP (2011) Evolutionary dynamics of transposable elements in a small RNA world. Trends Genet 27:23–31.  https://doi.org/10.1016/j.tig.2010.10.003 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743.  https://doi.org/10.1046/j.1365-313x.1998.00343.x CrossRefPubMedGoogle Scholar
  4. Diéguez MJ, Vaucheret H, Paszkowski J, Mittelsten Scheid O (1998) Cytosine methylation at CG and CNG sites is not a prerequisite for the initiation of transcriptional gene silencing in plants, but it is required for its maintenance. Mol Gen Genet 259:207–215.  https://doi.org/10.1007/s004380050806 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Du J, Grant D, Tian Z, Nelson RT, Zhu L, Shoemaker RC, Ma J (2010) SoyTEdb: a comprehensive database of transposable elements in the soybean genome. BMC Genom 11:113.  https://doi.org/10.1186/1471-2164-11-113 CrossRefGoogle Scholar
  6. Durán-Figueroa N, Vielle-Calzada JP (2010) ARGONAUTE9-dependent silencing of transposable elements in pericentromeric regions of Arabidopsis. Plant Signal Behav 5:1476–1479.  https://doi.org/10.4161/psb.5.11.13548 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9:397–405.  https://doi.org/10.1038/nrg2337 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fukai E, Umehara Y, Sato S, Endo M, Kouchi H, Hayashi M, Stougaard J, Hirochika H (2010) Derepression of the plant chromovirus LORE1 induces germline transposition in regenerated plants. PLoS Genet 6:e1000868.  https://doi.org/10.1371/journal.pgen.1000868 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fultz D, Choudury SG, Slotkin RK (2015) Silencing of active transposable elements in plants. Curr Opin Plant Biol 27:67–76.  https://doi.org/10.1016/j.pbi.2015.05.027 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Grandbastien MA (2015) LTR retrotransposons, handy hitchhikers of plant regulation and stress response. Biochim Biophys Acta 1849:403–416.  https://doi.org/10.1016/j.bbagrm.2014.07.017 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832.  https://doi.org/10.1023/A:1006496308160 CrossRefPubMedGoogle Scholar
  12. Hirochika H (2001) Contribution of the Tos17 retrotransposon to rice functional genomics. Curr Opin Plant Biol 4:118–122.  https://doi.org/10.1016/S1369-5266(00)00146-1 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ibarra CA, Feng X, Schoft VK, Hsieh TF, Uzawa R, Rodrigues JA, Zemach A, Chumak N, Machlicova A, Nishimura T, Rojas D, Fischer RL, Tamaru H, Zilberman D (2012) Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337:1360–1364.  https://doi.org/10.1126/science.1224839 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ito H, Kakutani T (2014) Control of transposable elements in Arabidopsis thaliana. Chromosome Res 22:217–223.  https://doi.org/10.1007/s10577-014-9417-9 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Jääskeläinen M, Chang W, Moisy C, Schulman AH (2013) Retrotransposon BARE displays strong tissue-specific differences in expression. New Phytol 200:1000–1008.  https://doi.org/10.1111/nph.12470 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kanazawa A, Liu B, Kong F, Arase S, Abe J (2009) Adaptive evolution involving gene duplication and insertion of a novel Ty1/copia-like retrotransposon in soybean. J Mol Evol 69:164–175.  https://doi.org/10.1007/s00239-009-9262-1 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kasai M, Koseki M, Goto K, Masuta C, Ishii S, Hellens RP, Taneda A, Kanazawa A (2012) Coincident sequence-specific RNA degradation of linked transgenes in the plant genome. Plant Mol Biol 78:259–273.  https://doi.org/10.1007/s11103-011-9863-0 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kawashima T, Berger F (2014) Epigenetic reprogramming in plant sexual reproduction. Nat Rev Genet 15:613–624.  https://doi.org/10.1038/nrg3685 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kubo T, Fujita M, Takahashi H, Nakazono M, Tsutsumi N, Kurata N (2013) Transcriptome analysis of developing ovules in rice isolated by laser microdissection. Plant Cell Physiol 54:750–765.  https://doi.org/10.1093/pcp/pct029 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532.  https://doi.org/10.1146/annurev.genet.33.1.479 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lisch D, Slotkin RK (2011) Strategies for silencing and escape: the ancient struggle between transposable elements and their hosts. Int Rev Cell Mol Biol 292:119–152.  https://doi.org/10.1016/B978-0-12-386033-0.00003-7 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J (2008) Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics 180:995–1007.  https://doi.org/10.1534/genetics.108.092742 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Martínez G, Panda K, Köhler C, Slotkin RK (2016) Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell. Nat Plants 2:16030.  https://doi.org/10.1038/nplants.2016.30 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Miyao A, Iwasaki Y, Kitano H, Itoh J, Maekawa M, Murata K, Yatou O, Nagato Y, Hirochika H (2007) A large-scale collection of phenotypic data describing an insertional mutant population to facilitate functional analysis of rice genes. Plant Mol Biol 63:625–635.  https://doi.org/10.1007/s11103-006-9118-7 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mori A, Sato H, Kasai M, Yamada T, Kanazawa A (2017) RNA silencing in the life cycle of soybean: multiple restriction systems and spatiotemporal variation associated with plant architecture. Transgenic Res 26:349–362.  https://doi.org/10.1007/s11248-017-0011-8 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Mosher RA, Melnyk CW (2010) siRNAs and DNA methylation: seedy epigenetics. Trends Plant Sci 15:204–210.  https://doi.org/10.1016/j.tplants.2010.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Muotri AR, Marchetto MC, Coufal NG, Gage FH (2007) The necessary junk: new functions for transposable elements. Hum Mol Genet 16(Spec No. 2):R159–R167.  https://doi.org/10.1093/hmg/ddm196 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Nakashima K, Abe J, Kanazawa A (2018) Chromosomal distribution of soybean retrotransposon SORE-1 suggests its recent preferential insertion into euchromatic regions. Chromosome Res 26:199–210.  https://doi.org/10.1007/s10577-018-9579-y CrossRefPubMedPubMedCentralGoogle Scholar
  29. Okamoto H, Hirochika H (2001) Silencing of transposable elements in plants. Trends Plant Sci 6:527–534.  https://doi.org/10.1016/S1360-1385(01)02105-7 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Olmedo-Monfil V, Durán-Figueroa N, Arteaga-Vázquez M, Demesa-Arévalo E, Autran D, Grimanelli D, Slotkin RK, Martienssen RA, Vielle-Calzada JP (2010) Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464:628–632.  https://doi.org/10.1038/nature08828 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Rigal M, Mathieu O (2011) A “mille-feuille” of silencing: epigenetic control of transposable elements. Biochim Biophys Acta 1809:452–458.  https://doi.org/10.1016/j.bbagrm.2011.04.001 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Schubert D, Lechtenberg B, Forsbach A, Gils M, Bahadur S, Schmidt R (2004) Silencing in Arabidopsis T-DNA transformants: the predominant role of a gene-specific RNA sensing mechanism versus position effects. Plant Cell 16:2561–2572.  https://doi.org/10.1105/tpc.104.024547 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285.  https://doi.org/10.1038/nrg2072 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Slotkin RK, Vaughn M, Borges F, Tanurdzić M, Becker JD, Feijó JA, Martienssen RA (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:461–472.  https://doi.org/10.1016/j.cell.2008.12.038 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767.  https://doi.org/10.1105/tpc.2.8.755 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Weising K, Bohn H, Kahl G (1990) Chromatin structure of transferred genes in transgenic plants. Dev Genet 11:233–247.  https://doi.org/10.1002/dvg.1020110309 CrossRefGoogle Scholar
  37. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201.  https://doi.org/10.1016/j.cell.2006.08.003 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Zhao C, Takeshima R, Zhu J, Xu M, Sato M, Watanabe S, Kanazawa A, Liu B, Kong F, Yamada T, Abe J (2016) A recessive allele for delayed flowering at the soybean maturity locus E9 is a leaky allele of FT2a, a FLOWERING LOCUS T ortholog. BMC Plant Biol 16:20.  https://doi.org/10.1186/s12870-016-0704-9 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kenta Nakashima
    • 1
  • Mayumi Tsuchiya
    • 1
  • Sae Fukushima
    • 1
  • Jun Abe
    • 1
  • Akira Kanazawa
    • 1
  1. 1.Research Faculty of AgricultureHokkaido UniversitySapporoJapan

Personalised recommendations