, Volume 248, Issue 5, pp 1249–1261 | Cite as

AgMYB2 transcription factor is involved in the regulation of anthocyanin biosynthesis in purple celery (Apium graveolens L.)

  • Kai Feng
  • Jie-Xia Liu
  • Ao-Qi Duan
  • Tong Li
  • Qing-Qing Yang
  • Zhi-Sheng Xu
  • Ai-Sheng XiongEmail author
Original Article


Main conclusion

This study showed that an R2R3-MYB transcription factor, AgMYB2, functions in anthocyanin biosynthesis and accumulation in purple celery.

Anthocyanins are involved in tissue coloration and stress response in plants. Foods containing high anthocyanin content are also beneficial to human health. Purple celery accumulated amounts of anthocyanins in the petioles. The biosynthesis of anthocyanin in plants is mainly regulated by the R2R3-MYB transcription factor (TF). However, the R2R3-MYB TF that controls anthocyanin accumulation in purple celery remains unclear. In this study, an R2R3-MYB TF gene, AgMYB2, was cloned from purple celery and characterized as anthocyanin biosynthetic regulator. Sequence analysis indicated that AgMYB2 contained highly conserved R2R3 domain and two anthocyanin characteristic motifs, ANDV motif and KPRPR[S/T]F motif. The relative expression level of AgMYB2 in purple celery was significantly higher than that in non-purple celery at three developmental stages. Heterologous expression of AgMYB2 in Arabidopsis generated more anthocyanins and resulted in dark-purple leaves and flowers. The expression levels of anthocyanin biosynthetic genes and the antioxidant activity of transgenic Arabidopsis carrying AgMYB2 were up-regulated. The determination of anthocyanin glycosylation activity of Arabidopsis crude enzyme verified the anthocyanin biosynthesis regulatory function of AgMYB2 at the protein level. The interaction between AgMYB2 and bHLH proteins was shown by yeast two-hybrid assay. The results will help to elucidate the molecular mechanism of anthocyanin biosynthesis in purple celery and provide an approach for cultivating plants with high anthocyanin content.


Anthocyanin Celery Expression level Overexpression R2R3-MYB Regulation 



Open reading frame


Transcription factor



The research was supported by the New Century Excellent Talents in University (NCET-11-0670); National Natural Science Foundation of China (31272175); Jiangsu Natural Science Foundation (BK20130027); Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

425_2018_2977_MOESM1_ESM.docx (70 kb)
Supplementary material 1 (DOCX 70 kb)


  1. Ahmed NU, Park JI, Jung HJ, Hur Y, Nou IS (2015) Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in Brassica rapa. Funct Integr Genom 15(4):383–394. CrossRefGoogle Scholar
  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  3. Braun EL, Grotewold E (1999) Newly discovered plant c-myb-like genes rewrite the evolution of the plant myb gene family. Plant Physiol 121(1):21–24CrossRefPubMedCentralGoogle Scholar
  4. Cheng H, Song SS, Xiao LT, Soo HM, Cheng ZW, Xie DX, Peng JR (2009) Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet 5(3):e1000440. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Czemmel S, Stracke R, Weisshaar B, Cordon N, Harris NN, Walker AR, Robinson SP, Bogs J (2009) The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiol 151(3):1513–1530. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dianat M, Veisi A, Ahangarpour A, Fathi Moghaddam H (2015) The effect of hydro-alcoholic celery (Apium graveolens) leaf extract on cardiovascular parameters and lipid profile in animal model of hypertension induced by fructose. Avicenna J Phytomed 5(3):203–209PubMedPubMedCentralGoogle Scholar
  7. Du H, Zhang L, Liu L, Tang XF, Yang WJ, Wu YM, Huang YB, Tang YX (2009) Biochemical and molecular characterization of plant MYB transcription factor family. Biochemistry (Mosc) 74(1):1–11CrossRefGoogle Scholar
  8. Feng K, Hou XL, Li MY, Jiang Q, Xu ZS, Liu JX, Xiong AS (2018a) CeleryDB: a genomic database for celery. Database. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Feng K, Xu ZS, Liu JX, Li JW, Wang F, Xiong AS (2018b) Isolation, purification, and characterization of AgUCGalT1, a galactosyltransferase involved in anthocyanin galactosylation in purple celery (Apium graveolens L.). Planta 247(6):1363–1375. CrossRefGoogle Scholar
  10. Feng K, Xu ZS, Que F, Liu JX, Wang F, Xiong AS (2018c) An R2R3-MYB transcription factor, OjMYB1, functions in anthocyanin biosynthesis in Oenanthe javanica. Planta 247(2):301–315. CrossRefGoogle Scholar
  11. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):31–34. CrossRefPubMedGoogle Scholar
  12. Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53(5):814–827. CrossRefGoogle Scholar
  13. Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55(6):481–504. CrossRefGoogle Scholar
  14. Hernandez I, Alegre L, Van Breusegem F, Munne-Bosch S (2009) How relevant are flavonoids as antioxidants in plants? Trends Plant Sci 14(3):125–132. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7(7):1071–1083. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31(8):1296–1297. CrossRefGoogle Scholar
  17. Huang W, Lv H, Wang Y (2017) Functional characterization of a novel R2R3-MYB transcription factor modulating the flavonoid biosynthetic pathway from Epimedium sagittatum. Front Plant Sci 8:1274. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jaakola L (2013) New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci 18(9):477–483. CrossRefGoogle Scholar
  19. Jin W, Wang H, Li M, Wang J, Yang Y, Zhang X, Yan G, Zhang H, Liu J, Zhang K (2016) The R2R3 MYB transcription factor PavMYB10.1 involves in anthocyanin biosynthesis and determines fruit skin colour in sweet cherry (Prunus avium L.). Plant Biotechnol J 14(11):2120–2133. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10(5):236–242. CrossRefGoogle Scholar
  21. Kranz H, Scholz K, Weisshaar B (2000) c-MYB oncogene-like genes encoding three MYB repeats occur in all major plant lineages. Plant J 21(2):231–235. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948. CrossRefGoogle Scholar
  23. Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Li YY, Mao K, Zhao C, Zhao XY, Zhang HL, Shu HR, Hao YJ (2012) MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple. Plant Physiol 160(2):1011–1022. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Li MY, Wang F, Jiang Q, Ma J, Xiong AS (2014) Identification of SSRs and differentially expressed genes in two cultivars of celery (Apium graveolens L.) by deep transcriptome sequencing. Hortic Res 1:10. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Li MY, Wang F, Jiang Q, Wang GL, Tian C, Xiong AS (2016) Validation and comparison of reference genes for qPCR normalization of celery (Apium graveolens) at different development stages. Front Plant Sci 7:313. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Li MY, Hou XL, Wang F, Tan GF, Xu ZS, Xiong AS (2018) Advances in the research of celery, an important Apiaceae vegetable crop. Crit Rev Biotechnol 38(2):172–183. CrossRefGoogle Scholar
  28. Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie TK, Espley RV, Hellens RP, Allan AC (2010) An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol 10:50. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Mano H, Ogasawara F, Sato K, Higo H, Minobe Y (2007) Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato. Plant Physiol 143(3):1252–1268. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Matsui K, Umemura Y, Ohme-Takagi M (2008) AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. Plant J 55(6):954–967. CrossRefPubMedGoogle Scholar
  31. Morohashi K, Casas MI, Falcone Ferreyra ML, Falcone Ferreyra L, Mejia-Guerra MK, Pourcel L, Yilmaz A, Feller A, Carvalho B, Emiliani J, Rodriguez E, Pellegrinet S, McMullen M, Casati P, Grotewold E (2012) A genome-wide regulatory framework identifies maize pericarp color1 controlled genes. Plant Cell 24(7):2745–2764. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Müller D, Schmitz G, Theres K (2006) Blind homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis. Plant Cell 18(3):586–597. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Nagella P, Ahmad A, Kim SJ, Chung IM (2012) Chemical composition, antioxidant activity and larvicidal effects of essential oil from leaves of Apium graveolens. Immunopharmacol Immunotoxicol 34(2):205–209. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Oh JE, Kim YH, Kim JH, Kwon YR, Lee H (2011) Enhanced level of anthocyanin leads to increased salt tolerance in Arabidopsis PAP1-D plants upon sucrose treatment. J Korean Soc Appl Bi 54(1):79–88. CrossRefGoogle Scholar
  35. Outchkourov NS, Karlova R, Holscher M, Schrama X, Blilou I, Jongedijk E, Simon CD, van Dijk ADJ, Bosch D, Hall RD, Beekwilder J (2018) Transcription factor-mediated control of anthocyanin biosynthesis in vegetative tissues. Plant Physiol 176(2):1862–1878. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Reed J (2002) Cranberry flavonoids, atherosclerosis and cardiovascular health. Crit Rev Food Sci Nutr 42(3 Suppl):301–316. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sarma AD, Sharma R (1999) Anthocyanin-DNA copigmentation complex: mutual protection against oxidative damage. Phytochemistry 52(7):1313–1318. CrossRefGoogle Scholar
  38. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108CrossRefGoogle Scholar
  39. Springob K, Nakajima J, Yamazaki M, Saito K (2003) Recent advances in the biosynthesis and accumulation of anthocyanins. Nat Prod Rep 20(3):288–303CrossRefPubMedCentralGoogle Scholar
  40. Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4(5):447–456CrossRefGoogle Scholar
  41. Sun C, Huang H, Xu C, Li X, Chen K (2013) Biological activities of extracts from Chinese bayberry (Myrica rubra Sieb. et Zucc.): a review. Plant Foods Hum Nutr 68(2):97–106. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Tan GF, Wang F, Ma J, Zhang XY, Xiong AS (2017) Analysis of anthocyanin and apigenin contents and the expression profiles of biosynthesis-related genes in the purple and non-purple varieties of celery. Acta Hortic Sin 44(7):1327–1334. CrossRefGoogle Scholar
  44. Tian J, Peng Z, Zhang J, Song T, Wan H, Zhang M, Yao Y (2015) McMYB10 regulates coloration via activating McF3′H and later structural genes in ever-red leaf crabapple. Plant Biotechnol J 13(7):948–961. CrossRefGoogle Scholar
  45. Tian J, Chen MC, Zhang J, Li KT, Song TT, Zhang X, Yao YC (2017) Characteristics of dihydroflavonol 4-reductase gene promoters from different leaf colored Malus crabapple cultivars. Hortic Res 4:17070. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, Awazuhara M, Inoue E, Takahashi H, Goodenowe DB, Kitayama M, Noji M, Yamazaki M, Saito K (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42(2):218–235. CrossRefPubMedGoogle Scholar
  47. Vogt T, Jones P (2000) Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci 5(9):380–386CrossRefPubMedCentralGoogle Scholar
  48. Wang SP, Huang KJ (2004) Determination of flavonoids by high-performance liquid chromatography and capillary electrophoresis. J Chromatogr A 1032(1–2):273–279CrossRefPubMedCentralGoogle Scholar
  49. Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126(2):485–493CrossRefPubMedCentralGoogle Scholar
  50. Xu ZS, Huang Y, Wang F, Song X, Wang GL, Xiong AS (2014) Transcript profiling of structural genes involved in cyanidin-based anthocyanin biosynthesis between purple and non-purple carrot (Daucus carota L.) cultivars reveals distinct patterns. BMC Plant Biol 14:262. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Xu ZS, Feng K, Que F, Wang F, Xiong AS (2017) A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots. Sci Rep 7:45324. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zhang XR, Henriques R, Lin SS, Niu QW, Chua NH (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1(2):641–646. CrossRefPubMedGoogle Scholar
  53. Zimmermann IM, Heim MA, Weisshaar B, Uhrig JF (2004) Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J 40(1):22–34. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kai Feng
    • 1
  • Jie-Xia Liu
    • 1
  • Ao-Qi Duan
    • 1
  • Tong Li
    • 1
  • Qing-Qing Yang
    • 1
  • Zhi-Sheng Xu
    • 1
  • Ai-Sheng Xiong
    • 1
    Email author
  1. 1.State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina

Personalised recommendations